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Abstract: The coupling of membrane-bound receptors to transcriptional regulators and other effector functions is
mediated by multi-domain proteins that form complex assemblies. The modularity of protein interactions lends
itself to a rule-based description, in which species and reactions are generated by rules that encode the necessary
context for an interaction to occur, but also can produce a combinatorial explosion in the number of chemical
species that make up the signalling network. The authors have shown previously that exact network reduction
can be achieved using hierarchical control relationships between sites/domains on proteins to dissect multi-
domain proteins into sets of non-interacting sites, allowing the replacement of each ‘full’ (progenitor) protein
with a set of derived auxiliary (offspring) proteins. The description of a network in terms of auxiliary proteins
that have fewer sites than progenitor proteins often greatly reduces network size. The authors describe here a
method for automating domain-oriented model reduction and its implementation as a module in the
BioNetGen modelling package. It takes as input a standard BioNetGen model and automatically performs the
following steps: 1) detecting the hierarchical control relationships between sites; 2) building up the auxiliary
proteins; 3) generating a raw reduced model and 4) cleaning up the raw model to provide the correct mass
balance for each chemical species in the reduced network. The authors tested the performance of this module
on models representing portions of growth factor receptor and immunoreceptor-mediated signalling networks
and confirmed its ability to reduce the model size and simulation cost by at least one or two orders of
magnitude. Limitations of the current algorithm include the inability to reduce models based on implicit site
dependencies or heterodimerisation and loss of accuracy when dynamics are computed stochastically.

1 Introduction

1.1 Combinatorial complexity of cell
signalling networks
Many signalling proteins, such as membrane receptors and
their cytoplasmic adapters, have multi-domain structures
and display multiple docking sites that engage several
downstream signalling proteins, thereby serving as scaffolds
[1–6]. Each domain can assume multiple states, for

instance, a docking site on a scaffold protein can be
unphosphorylated and free, phosphorylated and free,
phosphorylated and bound to a partner, which in turn can
be unphosphorylated and free, or phosphorylated and
bound to another protein or lipid and so on. In general,
the functional states of such multi-domain proteins will
depend on the states of all domains of the protein. We
define a microscopic model as one that explicitly represents
all possible states of multi-domain proteins and the feasible
reactions among these states.
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As an example, we consider a cell-surface receptor of the
receptor tyrosine kinase (RTK) family. RTK’s have a
modular structure that can be divided into an extracellular
region, which contains the ligand-binding and receptor
dimerisation sites and a cytoplasmic region, which has
tyrosine kinase activity and contains phosphorylation sites
with tyrosine, serine and threonine residues (Fig. 1).
Ligand binding activates RTKs by inducing either dimer
formation (e.g. epidermal growth factor (EGF) receptor) or
an allosteric transition (e.g. insulin receptor, IR, and
insulin-like growth factor receptor, IGF-1R) [7, 8]. These
structural transitions result in the activation of intrinsic
tyrosine kinase activity and subsequent autophosphorylation,
which initiates signal processing through receptor
interactions with a battery of adapter and target proteins
containing characteristic protein domains, such as Src
homology (SH2 and SH3), phosphotyrosine binding (PTB)
and pleckstrin homology (PH) domains (reviewed in [7, 9,
10]). These proteins, in turn, can also possess multiple
domains and sites that can be phosphorylated by the
receptor and dephosphorylated by phosphatases.

Binding between two signal-transduction proteins often
requires one of the two interacting sites to be phosphorylated,
which imposes an ordering on phosphorylation and binding
events. For proteins that have multiple binding sites,
however, binding of other proteins at different sites may be
independent (i.e. no interaction among binding partners)
or cooperative (i.e. binding partners interact either
positively or negatively). Ordering is imposed on binding
interactions at two different sites only if the cooperativity is

complete, that is, one site must be occupied for binding to
occur at the second site or one site must not be occupied
for binding to occur at a second site. Thus, in most cases
the presence of multiple binding sites gives rise to many
different combinations of protein aggregates that can have a
large number of different functional states. In general, the
number of states of an aggregate grows in a multiplicative
fashion with the number of possible states of each site,
leading to a combinatorial explosion in the total number of
different chemical species (molecules or complexes of
molecules in which each molecule is in a distinct state) that
must be included within a microscopic model. In the
conventional approach to modelling chemical kinetics [11],
in which the concentration of each species is described by a
separate ordinary differential equation (ODE),
combinatorial complexity may generate such a large set of
equations that simulation becomes infeasible on even the
most powerful computers. The problem arises in models
describing only the initial steps following ligand-receptor
binding, which can lead to hundreds or thousands of
possible species [12–15]. Extended models of growth
factor receptors and their initial scaffolding partners can
produce networks of 108 species [15], 1023 species [16],
and beyond, rendering the conventional approach useless
for such microscopic models.

1.2 Domain-oriented model reduction
One way to avoid the problem of combinatorial explosion is
model reduction. It has recently been shown that by
introducing a set of variables that tracks only subsets of the
possible combinations of the domain/site states rather than
the full set of possible complexes, it is possible to derive a
reduced set of dynamical equations for many signalling
networks [1, 2, 4, 15, 17]. This domain-oriented approach
to model reduction is based upon the mutual independence
and hierarchical control relationships between different sites
of each protein in a network, which goes as follows. If the
rates of transitions between the states of site qi on a protein
Q depend upon the state of another site qj on the same
protein Q, then site qi is termed dependent on site qj, and,
respectively, site qj is referred to as a controlling site for qi
[1]. The independence of sites means that the time course
of reactions involving some sites may be decoupled from
the reactions occurring at other sites. For each scaffold
protein, called a progenitor, a set of auxiliary (offspring)
proteins can be introduced, each of which contains a subset
of the progenitor protein’s sites. Previous work has shown
that the sites contained by the auxiliary proteins can be
chosen so that each reacts independently of the other
auxiliary proteins. The concentration of an auxiliary protein
with sites q1. . .qk in states s1. . .sk is defined to be the sum
of concentrations of all forms of the scaffold protein in
which each of the k sites has the same state as in the
auxiliary protein. The concentrations of the auxiliary
proteins are thus macroscopic (macro) variables that are
comprised of sums over the concentrations of microscopic
(micro) species in the system. In contrast to the number of

Figure 1 Multiplicity of the states of receptor and
receptor–adapter complexes

State of the receptor molecule R is characterised by a vector (r1,
r2, r3, r4), where r1 stands for the ligand (L)-binding site, r2 depicts
the dimerisation site and r3 and r4 specify the state of docking
sites for adapter proteins
Adapter protein B is a scaffold that possesses three sites (site b1
for binding to the receptor and tyrosine residues b2 and b3)
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micro variables, which is a multiplicative function of the
number of states of each site, the number of macro
variables is additive in the number of states of each
auxiliary protein. If a protein contains multiple independent
sites, the number of macro variables describing the protein’s
dynamics can be much smaller than the number of micro
states of the protein.

The domain-oriented approach thus provides a
macroscopic description of network dynamics in that it
does not follow the fate of all species and reactions that are
generated by scaffold signalling, thereby greatly reducing
the number of states and equations required for a
quantitative analysis of the system behaviour. The ODE’s
obtained by the transformation to macro variables are exact
in terms of auxiliary proteins. Kinetic Monte Carlo
methods, such as the Gillespie algorithm [2], can also be
used to provide an exact stochastic description of the
dynamics in terms of the macro variables, but, as we note
below in Section 2.4 require slight modification to avoid
loss of accuracy. The transformation to macro variables
entails some loss of information about correlations between
independent sites of a protein, but such correlations
typically cannot be measured by available experimental
techniques, most of which detect binding or
phosphorylation at either the whole protein or the single
site level. If such data is available, the modeler may choose
to define observables that track multiple sites within a
protein, although this will lessen the extent to which the
model can be reduced. Multi-site observables may also be
approximately reconstructed from single-site observables [1,
2, 4]. In practice, single-site macro variables are frequently
sufficient for making direct comparisons with experimental
measurements [18].

The domain-oriented approach to model reduction can
decrease the number of variables by orders of magnitude
and thus promises to be a powerful tool for the
development of realistic models of intracellular signalling.
Existing methods [1, 2, 4, 15, 17], however, are not
automated and require the modeller to define manually the
set of auxiliary proteins and the rules for their interaction.
For a highly interconnected network, this requires
considerable modelling experience and effort and may
obscure the basic structure of the model. Moreover, the
procedure has not yet been formalised algorithmically in
the previous works that describe the principle of domain-
oriented reduction. In this paper, we present an algorithm
for domain-oriented model reduction, which has been
implemented as module in the freely-available BioNetGen
modelling package [19].

1.3 Rule-based model description
Recent work has shown that automated generation of
domain-oriented models can be accomplished through the
use of a rule-based model description. Several software
packages, such as Moleculizer [20], StochSim [21–23],

BioNetGen [14, 18, 19, 24], enable the develop of rule-
based models based on a multi-state description of proteins
and other signalling molecules and rules that transform
these molecules according to specified properties of the
reactants. Rules represent a generalisation of reactions, and
a single rule may be applied to many different species to
generate new reactions and new species as products. In
order to simulate a rule-based model as a set of ODEs,
rules are applied iteratively to a seed set of species to
generate all of the possible reactions and species in the
network [24]. The cost of network generation, as well as
subsequent ODE integration, can be become prohibitive
for models exhibiting a high degree of combinatorial
complexity. The goal of the current algorithm is to reduce
the costs of network generation and simulation by replacing
each multi-state progenitor protein in the model with a set
of derived auxiliary (offspring) proteins that group sets of
independently-acting sites. Application of the transformed
rules to the set of auxiliary proteins will then generate a
transformed network that is smaller in size but no less
accurate for predicting the time evolution of the macro
variables.

In the present paper, we will describe our domain-oriented
reduction algorithm and examples using the specific syntax of
the BioNetGen language (BNGL), which is closely related to
the k-calculus of Danos and co-workers [16, 25], although
the method could be applied to any domain-oriented
model specification. We have also implemented the
algorithm as a module of BioNetGen, which is freely
available from http://bionetgen.org. A brief overview of
BNGL is provided in the Appendix with further details
provided in [19].

2 Results
Domain-oriented reduction attempts to construct the
smallest possible model of the network given the molecules
and interactions specified by the user that still allows
correct calculation for the specified observables. Since the
domain-oriented reduction method relies on control
relationships between protein sites, the module should
perform at least two major actions:

(1) Construct auxiliary proteins by detecting control
relationships between progenitor protein sites.

(2) Generate reactions and observables for the reduced
network that preserve mass balance.

2.1 Automatic construction of auxiliary
proteins
The algorithm begins by partitioning the sites on each
molecule into (possibly overlapping) sets based on the
control hierarchy. Redundant sets are then removed, and
auxiliary proteins based on the controlling sets are
introduced. These three steps are carried out as follows:
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(1) Initial determination of controlling sets: The aim of
this step is to determine the controlling set for each site on
each protein according to the reaction rules and observable
patterns specified in the bngl-file. For each protein Q
with n sites called q1, . . ., qn, we analyse the reaction rules
as follows. If there is a reaction rule in which site q1 of Q is
present together with another site qk and the state of site q1
changes while the state of site qk does not, then site qk is a
controlling site for q1. If q1 and qk change their states
simultaneously in a reaction rule, or if q1 and qk are
mentioned simultaneously in an observable, then sites q1
and qk are mutually dependent, which means that qk is
considered a controlling site of q1 and vice versa. Sites with
identical names in the same molecule are also assumed to
be mutually dependent in order to prevent dissection of
proteins that can serve as a bridge for the formation of
dimers. After finding all sites that control site q1, we repeat
this procedure iteratively for each of the controlling sites
found at the previous iteration until no new controlling
sites can be found. The set that combines the site q1 (by
the definition, any site controls itself) and all direct or
indirect controlling sites is termed a controlling set
Z(Q,q1) ¼ (q1, . . . , qs) for site q1 on Q. Likewise, the sets
Z(Q,qi), i ¼2, . . . , n, are determined for each remaining
site on the protein Q. All controlling sets Z(Q,qi) are
subsets of the full set (q1, . . . , qn) of sites for protein Q.
The resulting sets Z(Q,qi) do not depend on the order of
appearance of any protein, site, reaction rule, or observable
in the bngl-file, because the process terminates only after
all possible control relationships have been found.

(2) Refinement of controlling sets: The aim of the
refinement step is to eliminate redundancy among the sets of
controlling sets that are used to define the auxiliary proteins.
Controlling sets for different sites may overlap, and if one
controlling set is a subset of another it is removed from the
set of controlling sets for a given progenitor, because an
auxiliary protein defined from this redundant set would
contain no unique information. The controlling sets
remaining after this refinement procedure are renumbered
and designated as (Z1(Q), . . . , Zm(Q), m ! n). Note that
after renumbering, we lose any information on the
relationships between indexes 1, . . . , m used for numbering
sets Zj and particular sites qi on the protein Q. The refined
set of controlling sets is optimal as the starting point for
auxiliary protein definition because it is the smallest set of
controlling sets for the sites of Q that contains all sites of Q.

(3) Auxiliary protein definition: For each set Zj(Q),
j ¼ 1, . . . , m, we define the macro variable [Qj(Zj(Q))],
which is the sum of the concentration of protein Q(q1, . . . ,
qn) over all possible states of the sites that are not included
in set Zj(Q). For example, if Zj(Q) contains all sites (q1, . . . ,
qn) except qx, qy, qz, the corresponding variable
is [Qj(Zj(Q))] ¼

PX
qx¼0

PY
qy¼0

PZ
qz¼0 [Q(q1, . . . , qx, . . . : ,

qy, . . . , qz, . . . , qn)], where indices qx, qy and qz run over
all the possible states (denoted form 0 to Z, Y and Z,

respectively) of the sites qx, qy, qz and [Q(q1, . . . , qx, . . . ,
qy, . . . , qz, . . . , qn)]] is the concentration of protein Q in
the state (q1, . . . , qx, . . . , qy, . . . , qz, . . . , qn). Hence, the
macro variable [Qj] depends on the states of the sites that
belong to Zj(Q) but is independent of all other sites that do
not belong to Zj(Q). To transform the rule set defining the
model from the micro variables into the macro variables, we
define an auxiliary protein Qj for each macro variable [Qj].
The auxiliary protein Qj has a set of sites (Zj(Q)), which is a
subset of the domains on the progenitor protein Q. In
physical terms, the multi-state progenitor protein is replaced
by a number of auxiliary proteins, each with a smaller
number of sites.

We can illustrate this procedure for the simple example of
proteins R and B shown in Fig. 1. Analysis of the reaction
rules that describe binding and phosphorylation reactions
that involve R and B (Supplement 1) shows that on R
phosphorylation residues, r3 and r4, depend on the ligand-
binding site, r1, as well as on the dimerisation site, r2.
Likewise, on the scaffolding adapter protein B, the RTK-
binding site b1 controls the phosphorylation residues b2 and
b3. Controlling sets of the sites on R and B are determined
by the algorithm described above as follows, Z(R,r1) ¼ fr1g,
Z(R,r2) ¼ fr1,r2g, Z(R,r3) ¼ fr1,r2,r3g, Z(R,r4) ¼ fr1,r2,r4g,
Z(B,b1) ¼ fb1g, Z(B,b2) ¼ fb1,b2g, Z(B,b3) ¼ fb1,b3g. The
deletion of redundant sets results in the following
remaining sets, Z1(R) ¼ fr1,r2,r3g, Z2(R) ¼ fr1,r2,r4g,
Z1(B) ¼ fb1,b2g, Z2(B) ¼ fb1,b3g.

Although it may first appear counterintuitive, the extent of
model compression increases with the number of the
auxiliary proteins derived from each proteinQ, since the total
number of micro variables is a product of the number of
states of each site on Q, whereas the number of macro
variables of is a sum of the number of states of each auxiliary
protein Qj. In the extreme case of interactions among all sites
on the scaffold, the above procedure results in a single
controlling set that contains every site on the protein. The
resulting single auxiliary protein Q1 ¼ Q(q1, . . . , qn) is then
the same as the progenitor protein, and no model reduction
occurs. Note that although in the paper (both in the
main text and in the supplements), for the sake of simplicity,
we label the auxiliary proteins by index, for example,
Q1, Q2, Q3, the macro-program module labels auxiliary
proteins using its contained sites [e.g. Q _q1_q2(q1,q2),
Q _q1_q3(q1,q3), etc.].

2.2 Generation of reactions and
observables that preserve mass-balance
Sites found on more than one auxiliary protein derived from
the same progenitor protein are termed shared sites. If a
particular site is found on only one auxiliary protein, this
site is referred to as a unique site. For instance, sites r1 and
r2 on the RTK R and the b1 on the adapter B in Fig. 1 are
shared, whereas r3 and r4, b2 and b3 are unique. The model
reduction algorithm must ensure that proteins that bind to
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shared sites will not be counted more than once in mass-
balance equations. Otherwise, the introduction of n
auxiliary proteins containing the same shared site leads to
an n-fold increase in the concentration of the shared site
and produces incorrect binding kinetics. As shown
previously [1, 2], the correct kinetics is obtained if only one
of the binding reactions involving the shared site consumes
or produces the binding partner. The auxiliary protein
involved in this reaction is termed balance-accountable,
whereas the remaining auxiliary proteins are termed
balance-unaccountable. The choice of the balance-
accountable auxiliary protein among the auxiliary proteins
containing the shared site is arbitrary [1]. A detailed
example that illustrates how this may be done manually in
BioNetGen scripts using non-consumption tags and a
manually-specified macro reduction is provided in
Supplement 2.

This procedure, however, is insufficient when both
reactants in a binding reaction contain shared sites. This is
an important case to consider because many, if not most,
RTKs dimerise. For this reason the current domain-
oriented reduction module for BioNetGen performs mass
balance corrections in a different way that does not involve
the use of non-consumption tags in reaction rules, but
rather applies corrections to the network of species and
reactions generated by rule application, that is, at the level
of the net-file rather than at the level of the bngl-file
(Appendix).

A detailed description of the implemented procedure is
provided in Supplement 3, but the essential elements
comprise steps 4(a)–4(c) in the algorithm summary
provided below.

(1) Analysis of reaction rules and patterns of the observables
to determine the site dependence hierarchy for each protein,
according to the algorithm described in Section 2.1

(2) Replacement, where applicable, of progenitor proteins
with the sets of auxiliary proteins, according to the
algorithm described in Section 2.1.

(3) Generation of ‘raw’ or uncorrected network of species
and reactions (accomplished in BioNetGen by the
generate_network command).

(4) Correction of the raw macro-network model.

a. Complexes that contain two or more different auxiliary
proteins derived from the same progenitor protein overload
the macro-network with extra species. These species lead to
the multiplication of the concentrations of unique sites,
which leads to spurious effects. To eliminate this problem,
all complexes that contain different auxiliary proteins
derived from the same progenitor protein are removed from
the list of species in the network and from the list of
species corresponding to each observable. Reactions
involving the removed species are also removed.

b. To provide the correct mass balance for the partners of the
shared sites, the module disables consumption or production
of all species that bind to or dissociate from shared sites of
balance-unaccountable auxiliary proteins. The current
version of the domain-oriented reduction module treats
homo-dimerisation as an exception to this rule, but does
not handle the case of binding between shared sites (either
direct or mediated via other proteins) of different
progenitor proteins (Section 2.4 and Supplement 5 for
more detail).

c. Observables are corrected to eliminate species that contain
balance-unaccountable auxiliary proteins if their contribution
to the observable has been also taken into account by species
that contain balance-accountable proteins.

A flowchart of the complete algorithm for domain-
oriented model reduction that is implemented as a
BioNetGen module is shown in Fig. 2.

2.3 Numerical examples
Numerical experiments illustrate the performance of the
automated model reduction methods for a set of several
RTK signalling networks, including an EGFR-like
network, in which ligand binding induces aggregation
through receptor-receptor interactions [17, 26, 27] (Fig. 1
and Supplement 1) and an FceRI-like network
(Supplement 4), in which receptor aggregation is mediated
by a bivalent ligand [28]. There are two versions of both
models, one with two receptor tyrosine residues, r3 and r4,
which upon phosphorylation can bind the adapter proteins,
A and B, respectively (Fig. 1), and one with an additional
tyrosine, r3a, which also can bind A upon phosphorylation.

Table 1 shows the extent of model reduction achieved by
the domain-oriented method. Although the models

Figure 2 Flowchart of operations for the domain-oriented reduction algorithm
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presented here are small in scope, including only four
proteins and a few reaction rules, the reduction method
decreases the number of species and reactions, as well as
time required for model generation, by orders of
magnitude. Because even the reduced models contain tens,
if not hundreds of species, and hundreds of reactions,
manual (non-automatic) preparation of the reduced models
seems impractical. The relative difference between results
for the full and reduced models for the computed values of
observables is less than 1028 (the tolerance limit for the
ODE integration), which confirms that the algorithm
performs correctly and does not introduce significant
numerical errors into the integration (data not shown).

2.4 Limitations
Although these examples confirm the ability of the module
to reduce the models by at least one or two orders of
magnitude, the algorithm has limitations, which are
summarised here and described in detail in Supplement 5,
where future extensions of the algorithm to address these
limitations are also proposed. For each of the six cases
discussed below, the possibility exists that current
module may either fail to reduce a reducible model or may
produce an incorrect reduced model (i.e. one whose
simulation produces results that differ from those produced
by the full model) if the model possesses certain features
that trigger limitations in the current algorithm. To help
users of the module avoid these outcomes, we provide
tips, summarised in Table 2, for recognising problematic
model elements and adjusting module control parameters
to avoid reducing parts of a model that cannot be correctly
handled. We strongly suggest that, wherever possible,
simulation results from reduced models obtained by the
macro module be compared with results of an exact
simulation to verify that the model has been correctly
reduced. Although the limitations described here and
elaborated in Supplements 3 and 5 represent all limitations
in the current algorithm of which we are presently aware,
we do not have a proof that these are exhaustive, and it is

thus possible that unforeseen instances of incorrect model
reduction may occur.

1. Identical site names: As mentioned in Section 2.1, the
module assumes mutual dependence among sites with
identical names. Although this feature is necessary for the
proper treatment of ‘bridging’ events, in which two
monomers are linked by a bivalent ligand, it also decreases
the extent of model reduction when such bridging is not
necessary. In the latter case, the user is advised to use
unique names for each site on a molecule.

2. Implicit bonds: In the current algorithm, each control
relationship is detected using a single reaction rule that is
taken separately from other rules. As a result, the algorithm
cannot identify control relationships arising from implicit
binding relationships, such as in the BNGL expression
A.B, which requires that proteins A and B be in the same
complex but does not specify the mechanism of binding.
This limitation can be addressed at the user level by
avoiding implicit dependencies in the model specification,
although cases arise when this is not possible [29]. As
detailed in Section 3 of Supplement 5, iterative processing
of the rules could be used to resolve these control
relationships.

3. Binding between shared and unique sites of the same
auxiliary protein: The current module incorrectly reduces
models generating complexes with chains or loops of
chemical bonds that link a unique site of an auxiliary
protein to a shared site of the same protein or another
instance of the same protein type. The resulting reduced
models have incorrect mass balances leading to incorrect
simulation results for some observables. Automated
handling of such cases would also require iterative
processing of the rules. To avoid the possibility of an error
in model reduction, the user is advised to validate results of
reduced model against full model wherever possible. If a
discrepancy occurs, the user can inspect the species list for
the occurrence of complexes that link shared and unique

Table 1 Quantification of the network reduction achieved by the domain-oriented reduction methoda

Total number
of species in
the full/
reduced
model

Total number of
reactions in the
full/ educed

model

CPU time for
network

generation, of the
full/reduced
model, s

CPU time for
ODE integration
of the full/

reduced model,
s

EGFR-like
network

receptor with two tyrosine residues 708/108 7432/534 51.6/8.45 1.45/0.22

receptor with three tyrosine
residues

6000/135 81 364/642 662.0/12.0 12.58/0.76

Fc1RI-
like
network

receptor with two tyrosine residues 213/48 2230/198 14.2/3.87 0.47/0.15

receptor with three tyrosine
residues

1599/60 22 990/240 182.4/6.02 3.58/0.12

aComputed using BioNetGen 2.0.41 running on Pentiumw 4 CPU 2.80 GHz with 1 GB RAM
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sites. If such species are found, the user must manually
disable macro-reduction of the involved protein using the
–nored option (see more details in Section 3 of
Supplement 5).

4. Control relationships between sites on different
proteins: The algorithm presented here only utilises
hierarchical control relationships within a single protein.
However, for models in which the state of one protein in a
complex affects the transformations between the states of
another protein in the same complex, the use of only
within-protein control relationships may give an incorrect
reduced model. An example involving ordered
phosphorylation of an adapter protein is illustrated in
Fig. S5.2, and a bngl-file for the model is given in
Supplement 6. The current implementation does not detect
control relationships between sites of different proteins, and
if such relationships exist in a model, the user is also
advised to disable domain-oriented reduction (–nored

option). In addition, incorrect model reduction can be
detected by comparing time courses of the reduced and
exact models, as shown in Fig. S5.3.

5. Binding between shared sites of different proteins:
The algorithm does not identify reductions when auxiliary
proteins from different progenitor proteins bind to each
other through shared sites. This case is important because
when multi-site signalling proteins can form dimers,
formation of the dimer frequently modulates the activity of
sites within each protein – a prominent example being the
ErbB family of RTKs [30, 31]. Allowing association of
the auxiliary proteins of one progenitor protein with the
auxiliary proteins of a different progenitor leads to a
proliferation in the number of heterodimers. The resulting
problem of generating the correct mass balances for
the binding partners of the progenitor proteins is not
solved by the simple trick that works in the case of
homodimersiation, in which the complexes containing

Table 2 Overview of limitations in the current version of the domain-oriented reduction module

Limitation Model properties that
trigger this limitation

How the module
processes this

case

How to avoid the problem Plans for future
handling

1. identical site
names

proteins containing two or
more sites that have the
same name

sites with identical
names are
assumed mutually
dependent

make site names unique none

2. implicit bonds include/exclude
directives in reaction rules.
Implicit bonds in reaction
rules or observables

implicit bonds are
not considered in
control
relationships

remove include/
exclude directives and
implicit bonds from the
model

identification of
control
relationships
through iterative
processing

3. binding between
shared and unique
sites of the same
auxiliary protein

complexes that contain a
bond or a chain of bonds
that connects the shared and
unique sites of one auxiliary
protein or two auxiliary
proteins of the same type

generates reduced
models with
incorrect mass-
balance

inspect species list for
occurrence of such
complexes. validate results
of reduced model against
full model

automated
detection of
offending
complexes

4. control
relationships
between sites on
different proteins

state of protein P influences
transformation between
states of protein Q within a
complex

generation of
incorrect reduced
models for the
observables that
contain Q

disable reduction of P by
using the command-line
option ‘-nored P’

unknown

5. binding between
shared sites of
different proteins

binding of reducible proteins
through shared sites, that is,
heterodimerisation

generation of
incorrect reduced
models

disable reduction of
proteins involved in
heterodimerisation using
–nored option

unknown

6. stochastic
simulations

simulation of reduced
models using kinetic Monte
Carlo methods, for example,
Gillespie algorithm

levels of shared
site occupancy are
decoupled among
auxiliary proteins

validate results of reduced
model against full model to
estimate size of errors

correlated Monte
Carlo sampling
[33]

See corresponding section of Supplement 5 for further discussion of each limitation

348 IET Syst. Biol., 2008, Vol. 2, No. 5, pp. 342–351
& The Institution of Engineering and Technology 2008 doi: 10.1049/iet-syb:20070081

www.ietdl.org

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 16, 2008 at 10:33 from IEEE Xplore.  Restrictions apply.



different auxiliary proteins of the same progenitor protein are
simply removed from the model. To avoid the possibility of
errors the user is advised to use the –nored option for the
proteins that undergo heterodimerisation.

6. Stochastic simulations: A final limitation that applies
to the BioNetGen implementation but not to the reduction
algorithm per se is that simulations using kinetic Monte
Carlo methods such as Gillespie’s algorithm [32] with the
macro-reduced reaction network will not be exact unless
reactions involving binding and dissociation of shared sites
are properly correlated. The problem arises because in a
discrete-event simulation, every time a binding or
dissociation event occurs involving a shared site, the event
should apply to all of the shared sites of the same molecule.
In the macro model each of these events will be governed
by a separate reaction (albeit with the same rate) and these
will fire independently in a stochastic simulation, which de-
correlates the levels of shared site occupancy for the
auxiliary proteins sharing the site. (This problem does not
apply to the ODE equations because all the events occur at
the same rate and thus give the same values of site
occupancy.) To retain the correct site occupancies, one
could apply correlated Monte Carlo sampling [33], in
which one event is used to trigger a change in state of the
shared site of all n auxiliary proteins. This has not been
done for the stochastic simulation algorithm in
BioNetGen, but could be easily encoded in models
exported in the Systems Biology Markup Language
(Appendix).

3 Discussion
The multiplicity of scaffold proteins involved in RTK
signalling networks, their sites and states of these sites
results in a combinatorial explosion of the number of
possible states that involved proteins and their complexes
may have. The interactions present in signal transduction
systems may easily imply networks of possible species and
reactions that are too large to simulate using standard
methods for chemical kinetics. Recently, advances in
kinetic Monte Carlo methodology that use particle-based
event-driven simulations to avoid explicit generation of
species and reactions appear to have broken to bottleneck
caused by combinatorial complexity [34, 35]. ODEs,
however, afford both computational and analytical
advantages over stochastic methods and therefore methods
for limiting the size of the ODE system implied by a set of
biochemical interactions will continue to be important.

A central result of our previous theoretical studies is that
for many signalling networks, a microscopic picture of all
possible species may be substituted with a more compact
model that describes the network in terms of
experimentally detectable states of separate domains [1, 2,
4, 17]. The key features that allow such domain-oriented
reduction are hierarchical control relationships between
sites on proteins involved in signalling networks.

Based on these findings, we have developed a method for
automatic domain-oriented reduction of signalling network
models, which is implemented as a module in the software
package BioNetGen. The reduction module takes a standard
bngl-file as input and performs the following steps
(Fig. 2). First, the module determines the control
relationships between sites on protein molecules. Second, if
possible, self-controlling subsets of sites are determined for
each protein, and each reducible protein (progenitor protein)
is substituted with a set of auxiliary proteins that have only
the sites that belong to the self-controlling subsets. Third,
the raw network model, which is described in terms of
auxiliary proteins, is generated using BioNetGen. Finally,
the raw model is corrected to provide correct mass balance
for each species in the reduced model.

The algorithm has been applied to several realistic
examples involving aggregation of receptors with multiple
binding and modification sites, and a high degree of
model reduction was achieved, resulting in several orders
of magnitude of in increased computational efficiency
with no loss of accuracy (Table 1). The method is fully
automated, and the reduction module takes as input a
standard BioNetGen input file including standard
simulation commands (Appendix and [19]). The only
difference in output between a standard BioNetGen
simulation and one run through the macro module is that
species concentrations are reported only for the macro
variables and not for the microscopic species. Time
courses of observables generated by the full and reduced
models will be identical, except in the cases noted in
Section 2.4. Use of the module does not require the user
to understand details of the algorithm, although the user
is required to recognise the possible pitfalls described in
Section 2.4 and in some cases to manually turn off
reduction of problem proteins. Future work will focus on
overcoming limitations to the applicability of the
algorithm outlined in Section 2.4 and detailed in
Supplement 5.

Recently, a new model reduction technique based on
modular analysis has been proposed that augments the
domain-oriented approach used here, increasing the level of
compression that can be attained at the cost of introducing
some degree of error, which appears to be small for the
cases examined so far [15]. At the present time, the
method requires manual analysis and application, but its
automation would appear to be a promising area for future
development.
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6 Appendix: overview of
BioNetGen
BioNetGen provides a flexible language for the description of
protein structure and protein interactions called the
BioNetGen language (BNGL) [19]. A model specification

in the bngl-file may consist of five required elements:
parameters, species (also called seed species),
reaction rules, observables, and actions.
Parameters specify the kinetic rate constants, total protein
concentrations and other fixed numerical properties of the
model. Species describe molecules (including their sites and
states of these sites) that are present at the start of network
generation. For example, the species P(s1,s2 ! pY)defines
a protein named P, which has two sites named s1 and s2,
and specifies that the site s1 is free, and the site s2 is in the
state named pY (a mnemonic for phosphotyrosine) and also
free.

Reaction rules list the rules for building the biochemical
network. For example, the reversible rule

A(b)þ B(a, c) , $ . A(b!1) : B(a!1, c) k on, k off

describes the binding and dissociation of molecules A and B,
where the first reactant may be any species that contains the
protein A whose site b is free, and the second reactant may be
any species that contains the protein B whose sites a and c are
both free. The product of these reactions contains proteins A
and B bound via b-site on A and a-site on B, as indicated by
the exclamation mark followed by the number 1, which
denotes a termination point for the bond labeled ‘1’. In this
complex, the c-site on B is free and all other sites on A or
B (that were specified in the species block) may be in
any possible state. All the binding reactions generated by
this reaction rule will have a second-order rate constant
kon, and all dissociation reactions will have the first-order
rate constant koff. Observables describe the sums over the
concentrations of species sharing similar attributes, which
correspond to the quantities that are measured in typical
biological experiments. For example, the observable

Molecules P s2 phos P(s2 ! pY)

defines the observable named P_s2_phos of type
Molecules, which means a weighted sum over the
species matching the pattern P(s2 ! pY), which finds
instances of the protein P in which the site s2 is in state pY.

The last major element of a bngl-file is the set of actions,
which are commands that operate on a model specification.
Two basic commands are illustrated in the examples
presented in Supplements 1, 2, and 6. The
generate_network command automatically generates
the set of all feasible species and reactions by iterative
application of the rules to the initial set of species. The
resulting network can be written either in the BioNetGen-
specific format (net-file) or exported in the Systems
Biology Markup Language [36], which can be imported by
a large number of other simulation and analysis tools. The
simulate_ode command performs an ODE-based
simulation of the network over a specified time period with
results reported at specified time points. Additional
commands and details of BNGL syntax can be found in [19].
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