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A method for calculating the vibrational eigenstates of van der Waals clusters is presented and 
applied to argon-benzene. The method employs the linear variational principle with a 
nonorthogonal basis set of Gaussian functions in both the stretching and bending coordinates. 
These localized functions allow greater flexibility than the standard spherical harmonics or 
Wigner D functions and should be more efficient when the motion is confIned to specific regions 
of the potential energy surface. Calculations are performed on several potential surfaces 
including two recent fits to a previously published ab initio calculation. Accurate results with 
rapid convergence are obtained here for the states of zero total angular momentum (J=O> . The 
results agree with calculations recently performed on the same potential surfaces by a different 
method [J. Chem. Phys. 98, 5327 (1993)] and suggest a reassignment of the experimentally 
observed bands. An extension of the basis set to nonzero J is presented in the Appendix. 

I. INTRODUCTION 

High-resolution spectroscopy of intermolecular vibra- 
tions in van der Waals (vdW) complexes provides a sen- 
sitive probe of intermolecular forces. The rapidly accumu- 
lating wealth of spectroscopic data has created a demand 
for e5cient and adaptable means to calculate the vibra- 
tional states of weakly bound complexes from trial poten- 
tial energy surfaces. The development of more efficient 
computational methods along with the widespread avail- 
ability of high-speed computers has enabled accurate de- 
termination of the multi-dimensional intermolecular po- 
tentials for several atom-molecule systems.‘” For systems 
of more than two dimensions, however, the procedure re- 
mains difficult and expensive. There is a continuing need 
for computational methods that are both easy to imple- 
ment and scale well with increasing dimension. 

Weakly bound systems pose a particular challenge be- 
cause the standard “normal modes” are often strongly cou- 
pled, and thus provide an inadequate description of the 
vibrational motion. In many vdW complexes, the bending 
motion of the monomers is more accurately described as 
free internal rotation, in which the angular momentum of 
the monomers is nearly conserved. This suggests expand- 
ing the solution in a basis set of rotational eigenfunctions, 
spherical harmonics or Wigner D functions depending on 
the dimension of the problem. Delocalized functions are 
appropriate for complexes near the free-rotor limit, but 
become inefficient when the angular motion is hindered. 

Consider the case of an atom-molecule complex. As 
the center-of-mass separation decreases, the barrier to ro- 
tation of the molecule about its center-of-mass increases. 
When the radius of the molecule is comparable to or larger 
than the equilibrium separation, large regions of the angu- 

“)Supported under a National Science Foundation Graduate Research 
Fellowship. 

lar configuration space may become inaccessible due to the 
strong nuclear repulsions. Direct product basis sets where 
the angular functions cover the entire angular space will 
have flux in these regions, and a large number of angular 
basis functions will be necessary to localize the eigenstates 
on the accessible region of the potential. Calculations based 
on these basis sets will thus converge very slowly. The 
problem becomes particularly intractable for rare-gas- 
aromatic complexes.4*5 The close-coupling,6 collocation,7’8 
and standard variational4*g approaches all explicitly rely on 
expansions in the angular eigenfunctions. Until recently,” 
implementations of the discrete-variable representation 
(DVR) method” have also relied implicitly on such an- 
gular expansions. 

To avoid the problems associated with spherical func- 
tion basis sets, Brocks and van Koeven’ have derived an 
exact body-fixed Hamiltonian in Cartesian coordinates and 
have performed variational calculations using localized 
harmonic oscillator basis sets with good results. This 
method has been employed in the recent calculations of 
van der Avoird.i2 Mandziuk and BaEiE have also used the 
Cartesian Hamiltonian of Brocks and van Koeven in their 
recent three-dimensional DVR calculations on Ar- 
naphthalene.” The DVRi3 in each dimension is a point- 
wise representation associated with a particular set of or- 
thogonal basis functions, which are harmonic oscillator 
functions in this case. The three-dimensional DVR is the 
direct product of three one-dimensional DVR’s. The ki- 
netic energy matrix in the DVR is given by transforming 
the kinetic energy matrix in the harmonic oscillator basis 
using the DVR transformation,‘3 while the potential en- 
ergy matrix is approximately given as a diagonal matrix of 
the potential evaluated at the DVR points. The major ad- 
vantages of the DVR are that it eliminates the need for 
multidimensional integration to evaluate the potential en- 
ergy matrix and that it gives rise to a straightforward pro- 
cedure of truncating the Hamiltonian matrix to reduce the 
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size of the matrix diagonalization that must be per- 
formed.” DVR points in the highly repulsive regions of the 
potential may also be removed from the basis.” However, 
the DVR also inherits the weaknesses of the basis functions 
from which it is defined. A DVR method based on angular 
momentum functions will be more efficient than a standard 
variational approach, but will still encounter difficulties 
when applied to problems where these basis functions are 
less appropriate. Single-center basis sets, such as the 
harmonic-oscillator functions, become inefficient when 
there are multiple potential minima, such as occur in larger 
clusters or in clusters of high symmetry. A basic limitation 
of the DVR is that the pointwise representation must be 
associated with a particular set of orthogonal functions and 
no single set of orthogonal functions will be well-suited to 
the full range of problems. 

shown to be a straightforward process. An appropriately 
modified basis set, described below, provides a highly effi- 
cient and easy-to-implement method for treating the vibra- 
tional dynamics of rare-gas-aromatic complexes. Further- 
more, the extension described here should generalize to the 
treatment of molecul~molecule complexes in internal an- 
gular coordinates using distributed Gaussian basis sets. 

Multidimensional Gaussians,14 i.e., functions that are a 
product of a single Gaussian function in each coordinate, 
provide a more flexible approach. A major advantage of 
multidimensional Gaussian basis sets is their simplicity. 
They are localized in the multidimensional space, and an 
efficient nondiiect-product basis set may be constructed for 
a given problem simply by placing the Gaussian centers in 
regions of the potential energy surface where wave function 
amplitude is expected for the energies of interest. These 
regions need not be contiguous and the density of basis 
functions may be tailored to the shape of the potential 
surface. The matrix elements are either analytical or may 
be evaluated by simple quadrature schemes which exploit 
the various properties of Gaussian functions.14 In addition, 
it might be possible to use the collocation method, which 
allows the construction or a more general but more ap- 
proximate pointwise representation than the DVR, to 
avoid numerical integration.7 Collocation with the Gauss- 
ian basis set and the curvilinear Hamiltonian used here is 
not possible because of singularities that arise at 8=0. A 
multidimensional Gaussian basis set for which collocation 
would be possible could be constructed for the Cartesian 
Hamiltonian of Brocks and van Koeven. 

Argon-benzene is singled out here because of the avail- 
ability of both theoretical and spectroscopic data, and be- 
cause previous calculations of the vdW vibrations provide 
a basis of comparison to other methods. The equilibrium 
configuration of the complex is known from both rota- 
tional16 and electronic’7-1g spectroscopy to have C6, sym- 
metry. Ab initio studies have also predicted this geometry 
for the complex.2o Attempts to assign the small number of 
observed vibrational bands on the basis of normal mode 
calculations have been unsuccessful.‘7’21 These failures re- 
sulted in part from lack of an accurate potential energy 
surface for the complex, and in part because the one- 
dimensional calculations present an inaccurate and mis- 
leading picture of the dynamics. Brocks and Huygen’s fully 
three-dimensional calculations on an empirical potential4 
showed that there is strong anharmonic coupling between 
the bending overtone and the stretch fundamental charac- 
teristic of a Fermi resonance. Anharmonic bend-stretch 
coupling also seems to account for anomalies in a number 
of other rare-gas-aromatic spectra22 and should provide a 
stringent test for the validity of a given potential. This 
coupling is examined in detail here through a comparison 
of the uncoupled (adiabatic) and coupled states calculated 
using a localized basis. 

While this work was in progress, van der Avoird12 has 
published calculations on the same two ab initio fit sur- 
faces23 employed here. His results are in excellent agree 
ment with those reported here and confirm the correctness 
of both methods. Based on a similar analysis to that pre- 
sented below, he also proposes the same reassignment of 
the experimental spectrum. This reassignment has in fact 
been carried out and shown to be correct.24 

For the case of Ar-CO2 Peet” has shown that a local- 
ized basis set of two-dimensional Gaussians can yield a 
35%-40% reduction in basis set size over a basis of mono- 
mer rotational functions and radial Gaussians. Rare-gas- 
aromatic complexes provide a good proving ground for the 
extension of localized basis-set methods. The bending mo- 
tion in these complexes is large enough to invalidate small 
amplitude approximations, but is still confined to a rela- 
tively small region of the configuration space (e.g. - 10 a 
in Ar-benzene). If high accuracy is desired, multidimen- 
sional calculations must be carried out. These systems pos- 
sess an additional internal degree of freedom over the 
atom-linear molecule complexes, and require both modifi- 
cation and extension of the angular Gaussian basis set used 
by Peet. As the angular momentum in this additional co- 
ordinate is nearly conserved, however, Gaussians are used 
only in the original two dimensions. One apparent disad- 
vantage of the Gaussian basis in curvilinear coordinates is 
that the rotational boundary conditions must be explicitly 
worked out and imposed on the basis functions. This is 

II. METHOD 

A. Coordlnate system 

The coordinates used here have been previously de- 
rived by Brocks et al.25 and have been widely used for 
calculations on atom-molecule complexes. The body-fixed 
frame is defined by the vector R from the molecule center- 
of-mass to the atomic center. The two Euler angles a and 
p define the orientation of this vector with respect to a 
space-fixed coordinate system. The use of two rather than 
three Euler angles for this coordinate embedding has been 
shown to result in a clearer form of the Hamiltonian. 
Three more Euler angles, 0, 4, and x, specify the orienta- 
tion of the molecule-fixed axes with respect to the body- 
fixed frame. To make use of the molecular symmetry, the 
molecule-fixed z-axis is defined to be coincident with the 
C, axis of the benzene, with the origin located at the ben- 
zene center-of-mass, as shown in Fig. 1. The Cartesian 
coordinates of the argon atom in this molecule-fixed sys- 
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Rc-C = 1.395 a RC-H = 1.084 a 

FIG. 1. Body-fix4 coordinate system of the Ar-benzene complex. The 
coordinates are of the argon atom moving aroun$ the benzene molecule 
fixed at the origin in the x-y plane. The center-of-mass separation R and 
the two Euler angles 0 and x are then the standard spherical polar cuor- 
&mates for the Cartesian frame. 

tern are then given in the standard way by the spherical 
polar coordinates R, 0, and x. The interaction potential 
depends only on these three coordinates, but not on the 
remaining Euler angle 4, which defines a rotation of the 
molecular axis system about R. The angles a, B, and 4 are 
thus referred to as “rotational” coordinates, while the an- 
gles 8 and x are referred to as c‘vibrational.” This is an 
important distinction, since we wish to use a localized basis 
only for the vibrational coordinates, in which the motion 
may be hindered. The angular momentum functions will 
remain a good basis for the rotational motions. Although it 
is convenient to visualize the benzene as fixed, it is impor- 
tant to keep in mind that the actual bending motion is 
librational in a space-fixed frame. 

B. Hamiltonian 

The Hamiltonian for an atom-molecule interaction in 
body-tied coordinates can be written as25 

~=~int+~,,I 9 (1) 

where HmO, is the isolated molecular Hamiltonian and the 
interaction term is 

(2) 
j is the total angular momentum operator of the complex, 
3 is the angular momentum operator of the benzene mono- 
mer, R is the center-of-mass separation, and p is the re- 
duced mass of the complex. The first two terms are just the 
radial and rotational kinetic energies of the complex. Since 
the intramolecular vibrations of the benzene are much 
faster than the intermolecular motions of the complex, the 
interaction potential, I&, may be written as a function of 
the intermolecular coordinates R, 13, and x for a given 
vibronic state of the benzene monomer. This is analogous 
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to the Born-Oppenheimer approximation for nuclear mo- 
tion. Benzene is a symmetric top, so the molecular Hamil- 
tonian may be written as 

H,,=A~-(A-c)~~+E~ble’e, (3) 

where j, is the projection of the monomer angular momen- 
tum on the monomer z axis, A and C are the vibrationally 
averaged symmetric top rotation constants, and we have 
simply added the energy of the vibrational and electronic 
state of benzene. Both the interaction potential and the 
averaged rotation constants depend on the vibronic state of 
the benzene. Note that the Hamiltonian for any atom- 
rigid-top complex may be obtained simply by substituting 
the appropriate interaction potential and the appropriate 
rotational Hamiltonian into the above expressions. 

For simplicity, we consider here only the case of J=O. 
The nonzero J basis set and Hamiltonian are discussed in 
the Appendix. It is important to note that symmetric or 
asymmetric top complexes, unlike linear complexes, may 
have J=O states with nonzero vibrational angular momen- 
tum. This is because overall rotation about the intermolec- 
ular axis may cancel the angular momentum contribution 
due to degenerate vibrations in the symmetric top case, but 
not in the linear case. Thus, every vdW vibrational state in 
a nonlinear complex has a J=O component, the spectro- 
scopic band origin. The more complicated calculations at 
nonzero J are needed to determine the exact rotational 
structure and the Coriolis interactions. 

The Hamiltonian for J=O becomes 

+(&+a)P-ca-m 
+ V( R, 0,~) + Eib,% (4) 

It is now clear that j, commutes with the kinetic part of 
the Hamiltonian for an atom-symmetric top complex. If 
the azimuthal dependence of the interaction potential is 
weak, as it is for Ar-benzene, one would expect the azi- 
muthal angular momentum quantum number, k, to be 
nearly conserved. This fact will be exploited in the con- 
struction of the angular basis. Using the coordinate repre- 
sentation of the body-fixed angular momentum operator 
3, we may write the full Hamiltonian in terms of the body- 
fixed spherical polar coordinates 

# a2 
H=-m-gjpR 

-[&+A](&& 

+gj(sh 8;)) 

+WC)$+Y(R.B,X), (5) 
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J -- A contour plot of the global fit ab initio potential is 

-6t. 1 _~~~ ~_~.~ 
0 1 2 3 4 5 6- 

z (A) 

FIG. 2. Contour plot of the a6 inirio argon-benzene interaction potential 
of Ref. 23 (global fit A). The darkest contour is at -360 cm-‘, the 
lightest is at - 110 cm-‘, and the contours are spaced 50 cm-’ apart. 

where the first three terms comprise the kinetic energy 
operator of the complex. 
C. Interaction potential 

Calculations were performed on both an empirical po- 
tential surface employed in several previous works,4 and on 
a recently published ab initio surface.23 For comparison 
and to test the effects of anharmonicity, calculations were 
performed on two separate fits to the ab initio potential 
points. The global fit from Ref. 23 provides a representa- 
tion of the potential over the entire surface, while the 
Morse fit is more accurate near the region of the minimum. 
The empirical and global fit potentials have the atom-atom 
pairwise form 

V(R)= il [vc(r~r-cCI)+~~(r~r--~~)l, (6) 

where vc and vH are functions of the argon-carbon and 
argon-hydrogen internuclear separations, respectively. 
The Morse fit potential has the form 

V(x,y,z)=k,,W2+k,,(X2+y2)+k,,,w(X2+y2)-De, 
(7) 

where D, is the potential well depth, z, is the equilibrium 
center-of-mass separation and 

w= l- e--a+4. (8) 

The first three terms correspond to a Morse potential in the 
z coordinate, a harmonic restoring force in the x and y 
coordinates, and a cubic anharmonic coupling term. The 
Morse fit potential is not accurate for large values of 8. The 
appropriate pairwise functions and parameters are given in 
Refs. 4 and 23. 

shown in Fig. 2. The empirical and ab initio surfaces are 
qualitatively similar. Both have binding energies of about 
400 cm-’ with minimum barriers to internal rotation of 
approximately half the binding energy. Both potentials are 
also strongly anisotropic due to the shape of the benzene r 
orbitals. Along the minimum energy path of the argon in 
the angular coordinate around benzene, the center-of-mass 
separation increases from 3.5 A at e=o to 5.1 A at 
8= 7r/2. The center-of-mass separation also increases more 
rapidly near the equilibrium configuration. 

The strong potential anisotropy highlights a significant 
disadvantage of angular momentum basis sets-the need to 
expand the potential in angular functions. When the bar- 
riers to rotation are high, a large number of terms are 
needed to converge the expansion and for each new poten- 
tial additional care must be taken to see that convergence is 
obtained. Brocks and Huygen, for example, needed spher- 
ical harmonics up to 1,,=36 for their calculations on 
Ar-benzeneS4 Localized basis sets are more flexible because 
they do not rely on expansion in a particular functional 
form. 

Determination of the expansion coefficients by numer- 
ical quadratures is also complicated by singularities arising 
from the 6-12 form of the potentials. The problem arises 
from the fact that in a direct-product expansion with de- 
localized functions the basis functions may have significant 
amplitude near the singularities, and the integrals become 
extremely sensitive to the choice of quadrature points. 
These singularities may pose difficulties even for quadra- 
tures over the localized Gaussian basis functions used in 
this work. For this reason, it is desirable to fit the individ- 
ual pair potentials to a nonsingular functional form for 
regions near the atomic nuclei. The method employed here 
is to fit each pair potential to the functional form 

v (r)=A 4 ehbqr 4 ’ r < routoff , (9) 

where q represents either C or H and the coefhcients A, 
and b, are chosen to preserve the continuity of the pair 
potential and its derivative at r,,,,. Provided that rcutoff is 
chosen reasonably small, this damping should not have any 
physical consequence at the energies in which we are in- 
terested. For this work a choice of rcutoff= 1.0 A was found 
to be adequate, and the associated parameters for the two 
potentials are shown in Table I. Varying the choice of 
rcutoff was found to have no effect on the eigenenergies to at 
least 11 significant digits. 

Given the relatively large reduced mass of the complex 
and small rotational constant of the benzene (correspond- 
ing to a large reduced bending mass), one expects that in 
the low-lying vibrational states the argon will be localized 
on one side of the benzene molecule. The vdW vibrational 
states may thus be classified in the reduced symmetry 
group C,, rather than the full symmetry group of the po- 
tential, D6h .4 The vdW stretch belongs to the totally sym- 
metric representation Al, while the bend belongs to the 
representation E,. The symmetry of the overtones and 
combinations can be determined in the standard ways,26 
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TABLE I. Potential and geometric data for Ar-benzene. 

Empiricala Global Fitb Morse Fit” 

1.084 1.080 . . . 
1.395 1.406 . . . 

0.189 754 0.189 754 0.189 754 
0.094 877 0.094 877 0.094 877 

352.56 393.46 ~~ 425.00 
3.494 3.555 3.553 

196.1 228.3 . . . 

1.0 . . . 
1.7x10*5 **. 

2.6~ 10” 4.6x 1013 .** 
12.0 13.3 . . . 
12.0 13.2 . . . 

Molecular geometryd 
C-W& 
cc(A) 

Rotation constants 
14(cm-‘) 
C(cm-‘) 

Potential minimum 
D,(cm-‘) 
z,(& 
Rot. barrier(cm-‘) 

Additional parameters’ 
rclltoff (h 
AC (cm-‘) 
AH (cm-‘) 
bc (A-‘) 
b (A-‘) 

aParameters from Ref. 4. 
bParameters from global fit A of Ref. 23. 
‘Parameters from Ref. 23. 
dUsed in calculation of potential only. 
?ke F!q. (9). 

D. Basis set 

The solution to the S&r&linger equation for this 
Hamiltonian may be expanded as 

$=f Zk CijkfiW #jk(RX>, I , 

where the sets of fi and #jk represent complete bases in 
their respective coordinates. 

Approximate variational solutions may be obtained by 
simply taking subsets of the complete basis appropriate to 
a given range of energies (in this case the energies of the 
lowest lying bound states). For example, in many atom- 
diatom complexes it is appropriate to use a relatively lo- 
calized set of Gaussians in the radial coordinate because 
the stretching motion is fairly stiff. The angular motion in 
these complexes is often nearly that of a free rotor, so a 
fairly small set of spherical harmonics may be used. The 
angular motion in argon-benzene, however, is quite con- 
strained in the angular coordinate 8, and a very large basis 
of angular momentum functions must be used to converge 
even the lowest eigenstates.4 

A reasonable solution to this problem is to choose lo- 
calized bases for all of the coordinates for which motion 
on the potential surface is localized. This solution also 
avoids the difficulty of a slowly converging potential ex- 
pansion, because no functional form of the potential is as- 
sumed in the localized coordinates. For the argon-benzene 
complex, the basis should be localized in the R and 6 
coordinates, but not in the x coordinate. Because of the 
six-fold symmetry, the potential may be expanded 

AR=C;/A;, Ao=C>A2, (15) 

where the A’s are the grid spacing and the C’s are width 
parameters which may be chosen to optimize the perfor- 
mance of the basis. Choices of width parameter outside the 
range 0.4 to 1.4 can lead to problems with linear depen- 
dence on one end and slow convergence on the other. It is 
useful for a given problem to optimize the width parameter 
for each coordinate in a separate one- or two-dimensional 
calculation, as is done here. For these calculations the val- 
ues CR= 1.0 and Ce=O.4 were found to be nearly optimal 
and are used throughout. _ V(R,e,x)= Vo( R,8) + V6( R,0) cos 6x+..’ . (11) 
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Thus, if the basis functions in the x coordinate are taken to 
be eigenfunctions of one-dimensional rotation, eaih, the 
Hamiltonian will only couple states with the selection rule 
Ak=O mod 6. To first order the V, term may be neglected 
because the center-of-mass separation is relatively large 
compared to the atomic dimensions. Calculation of the 
low-lying vibrational states may then be carried out with 
the assumption that states of different k are not coupled, 
effectively reducing the dimensionality of the problem. The 
first-order Hamiltonian is thus block-diagonal in k. The 
first-order eigenstates obtained from these calculations 
may then be used as a basis for a fully coupled calculation. 
For the majority of low-lying states, however, this coupling 
proves to be negligible given the accuracy to which the 
potential is known, and should have only a very small 
effect. 

The basis chosen for this problem is thus a direct prod- 
uct of Gaussians in R and 8 distributed on a rectangular 
grid, with the appropriate near eigenfimctions of rotation 
in the x coordinate. The components of this basis are given 
by 

fi( R) =exp[ --A;( R- Ri)2], 

cpik(e,x) =exp[ -A~(@ -ej>21 

(12) 

Xsink e 
I 
cos kx, + parity 
sin kx, - parity ’ (13) 

where the Ri and ej are the positions of the Gaussian 
centers, and k is the unsigned azimuthal quantum number 
corresponding to rotation of the benzene about its symme- 
try axis. The sign of k is replaced by the parity quantum 
number, p= f 1, which is rigorously conserved. The selec- 
tion rule for the coupling of different k states by the po- 
tential becomes 

k’ h k” =0 mod 6. (14) 

For k=O, only the + 1 parity state exists. Normalization is 
taken into account in the overlap matrix. The extra 
sink 8 term in the angular basis function is added to pro- 
duce the correct asymptotic behavior at the singular point 
8=0. Without the addition of this term, singularities arise 
in k#O matrix elements of the kinetic energy. 

For equally spaced Gaussians the preexponential fac- 
tors may be chosen by Hamilton and Light’s formula’4 

Downloaded 20 Dec 2001 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



TABLE II. Symmetry species of J=O basis functions. 

kmod6 PetY 

0 + 
0 - 
I,5 +/- 
~$4 +/- 
3 + 
3 - 

J?CS”) 

Al 
-42 
‘-4 
E2 
B2 
4 

Because the Gaussians form a nonorthogonal basis, the 
variational solutions are obtained by solving the general- 
ized eigenvalue problem 

(H-.&S)u,=O, (16) 

where H is the Hamiltonian matrix, S is the overlap ma- 
trix, and the solutions E, and u, are the variational ei- 
genenergies and eigenfunctions, respectively. The solutions 
are found numerically using a subroutine from the NAG 
Fortran library.” 

The basis functions may be classified according to the 
point group C6, for the purpose of labeling the eigenstates 
and block factoring the Hamiltonian matrix. Basis func- 
tions of different overall symmetry will have no coupling 
matrix elements between them. A detailed symmetry anal- 
ysis is given in Ref. 4, however, the symmetry labels may 
be determined for the J=O case in a straightforward man- 
ner from the effect of the point group operations on the 
primitive basis functions. Since the point group operations 
do not affect the R and 0 coordinates, the labels depend on 
k and p alone. The appropriate symmetry labels are shown 
in Table II. For the states of E symmetry, calculation of a 
single parity component is suflicient. 

The eigenstates are also labeled in the conventional 
spectroscopic notation, 0: us, where nb is the number of 
bend quanta in the vdW bend, I is the vibrational angular 
momentum of the vdW bend, and v, is the number of vdW 
stretch quanta. For the J=O Hamiltonian, the vibrational 
angular momentum is k, as suggested by the symmetry 
classification of the basis states. Because of the selection 
rule in E?q. ( 14) the k quantum number is nearly conserved 
and is a good label for all of the states discussed here, while 
the v, and r+) labels break down when there are strong 
bend-stretch interactions. A reasonably straightforward 
extension of the basis set to nonzero J is presented in the 
Appendix. 

E. Full calculations 

The basis set for the three-dimensional calculations 
consists of a rectangular grid of Gaussians in R and 8 for 
each value of p and for k below the cutoff k,,. Only 
states of one p value need to be calculated for each of the 
two degenerate representations, since p is a rigorously con- 
served quantum number. To reduce the size of the matrix 
diagonalizations that must be performed, the blocks in 
each k quantum number within each symmetry block of 
the Hamiltonian are diagonalized first. The resulting states 
are near eigenstates of the full Hamiltonian coupled only 

by weak potential terms and the selection rule of Eq. ( 14). 
Because k represents the m inimum number of vibrational 
quanta, the states of different k that can couple should be 
well-separated in energy, at least for the states of only a few 
quanta of excitation that are of interest here. The energies 
of these states should thus be a good approximation to the 
exact eigenenergies. These k-uncoupled states are then 
used to form a basis of greatly reduced size for the full 
Hamiltonian. Only states below the energy Vcutor are in- 
cluded. This contraction parameter is chosen to lie well 
outside the energy range of interest. The resulting matrix is 
then diagonalized to give the fully coupled eigenstates. 

The size of this basis set may be reduced further by 
removing elements centered at points where the potential is 
greater than some cutoff value, V,,. This method was 
suggested by Peett5 and provides a simple way to construct 
an efficient nondirect product basis. For this problem the 
value of the potential at ( Ri, 0, ,O) is used to determine 
whether a given basis function is discarded. 

The overlap and kinetic energy matrix elements may 
be written as the products of one-dimensional integrals. 
The radial components have analytic factors which are 
given elsewhere14 or may be simply derived. The angular 
integrals may be computed by simple numerical quadra- 
tures and are diagonal in the quantum number k. Compu- 
tation of these matrices is thus very efficient, accounting 
for less than 1% of the total computational time. 

The potential matrix elements are not separable and 
must be evaluated in the full three-dimensional space. Mul- 
tidimensional numerical quadrature is considerably more 
costly, and the evaluation of these integrals consumes be- 
tween 50% and 80% of the computational time for the 
basis sizes considered here. The remainder of the time is 
spent on the diagonalization. For larger basis sets, the di- 
agonalization time becomes rapidly dominant because the 
operation goes as N3, whereas evaluating the matrix ele- 
ments is of order N2 or N. 

One technical point worthy of note is the efficiency of 
rectangular grid spacing. Integrals over products of equal- 
width Gaussians reduce conveniently to integrals over a 
single Gaussian centered at the mean position, i.e., 

s dR e-A(R-Ri)2 e-A(R-R.)Z J f(R) 

= e-t(R i-Rj)’ s dR e--2A(R-(Ri+ Rj)E)’ f(R) ( 17) 

Thus, the number of integrals that must be calculated can 
be reduced from z N&J2 to ~~~~~~~~ because the inte- 
grals depend only on the distance between the Gaussian 
centers in each coordinate. For 200 Gaussians, a typical 
number, this results in a 25-fold savings. 

F. Adiabatic calculations 

To elucidate the nature of the bend-stretch interac- 
tions calculations are performed with the bend and stretch 
coordinates adiabatically decoupled. The scheme used here 
has been called the “reversed-adiabatic approximation,“28 
because R is taken as the “fast” coordinate. A  similar 
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TABLE III. Basis set parameters for Ar-benzene calculations. The col- 
umns are labeled by the estimated accuracy of the 6rst 11 eigenenergies. 
The third column shows the parameters used to estimate the level of 
convergence. 

Estimated Convergence 

parameter 0.01 cm-’ 0.001 cm-’ Calibration 

Basis size 
NR 15 24 30 
NO 15 24 30 

2 
183 387 607 

6 6 6 
Width parameters 

CR 1.0 1.0 1.0 
Cl? 0.4 0.4 0.4 

Grid 
&in 6) 3.1 3.1 3.1 
R max 6) 5.0 5.0 5.0 
em 45” 63” 63” 

Potential cutoff 
V max (cm-‘) 100.0 100.0 100.0 

Basis contraction 
V cutoff (m-l ) - 150.0 - 150.0 - loo.0 

procedure has been employed by Tiller and Clary’ to in- 
vestigate bend-stretch coupling in other vdW clusters. The 
radial Hamiltonian, 

@  a2 
HR=i2pRdR -2 R-k Ve,,W, (18) 

is solved on a grid of points in 0 and x using the radial part 
of the basis described above. The eigenvalues of this Hamil- 
tonian at each point in the angular configuration space 
determine an effective bending potential, which is a func- 
tion of the number of stretch quanta. The bend Hamil- 
tonian is thus 
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TABLE IV. Converged eigenenergies of the empirical potential from Ref. 
4 for J=O. 

Symmetry Band origin Vibrational assignment k uncoupling effect* 
(G”) (cm-‘) (4 &lb (cm-‘) ” 
Al O.OOC 000 O.oooO 
El 21.37 1’0 0.0003 
AI 32.28 2°0++001d 0.0014 
E2 41.01 220 0.0025 
Al 47.78 0°1++200d 0.0039 
El 49.07 310el’ld O.cOSl 
4 58.72 330 . ..e 
B2 59.37 330 . ..e 
Al 60.32 406 0.0179 
E2 65.15 426 0.0340 
El 68.76 l’lf 0.0255 

‘Approximate energy using k-uncoupling approximation - exact energy. 
bApproximate labels in standard spectroscopic notation (see text). 
‘D,=308.27 cm-‘, zero point energy =4X29 cm-‘. 
dFermi resonant pair. 
‘Not calculated for these states. 
‘These states involve strong mixing among more than five zeroth-order 
states. Labels represent states with the largest contributions. 

vergence of the first eleven eigenstates was better than 
0.001 ~cm- ‘. This level of convergence was demonstrated 
by subsequent calculations with 485 (24 x 30) and 607 ( 30 
x 30) basis functions. This check also shows that the first 
66eigenenergies (up to about - 170 cm-’ on the empirical 
potential) are converged to better than 0.01 cm-‘, the 
lim itation on the accuracy of the higher states being the 
cutoff imposed on the extent of the angular basis (approx- 
imately 60 “) and the basis contraction parameter Vcut,,~. 

. --(A--C) P+ v&JW. 

The calculations with 607 basis functions point out one 
potential drawback to the use of nonorthogonal basis sets. 
The eigenenergies of some states actually increase by a few 
ten-thousandths of a cm-’ due to the introduction of some 
linear dependence in the basis. A practical lim it on accu- 
racy for these calculations thus seems to be about 0.0001 
cm-‘. It may be possible to overcome this problem by 
prediagonalizing the overlap matrix and removing the 
problematic eigenfunctions, i.e., those whose eigenvalues 

This Hamiltonian is diagonalized, holding R fixed at the 
equilibrium value, in the angular basis previously de- 
scribed. The resulting eigenvalues aid in determining the 
approximate assignment of the exact eigenstates and mark 
the presence of strong bend-stretch interactions. The adi- 
abatic eigenstates may also be projected onto the exact 
eigenstates of the three dimensional Hamiltonian in order 
to determine numerical coefficients for the bend-stretch 
coupling. 

Ill. RESULTS AND DISCUSSION 

Tests for accuracy of the quadrature scheme and con- 

TABLE V. Converged eigenergies of the global fit potential from Ref. 23 
for J=O. 

Band origin Ref. 12 Difference 
(cm-‘) (cm-‘) (cm-‘) 

vergence of the eigenenergies were performed by varying 
the number of quadrature points and basis functions. Ex- 
tensive tests were done using the empirical potential, and 
convergence was checked with calculations on all three 
potential surfaces. With 387 Gaussian basis functions, con- 
tracted from a grid of 24 Gaussians in R and 8, the con- 

Symmetry 
(c6”) 

Al 
El 
AI 
E2 

Al 

El  

4 

0.00” 
25.52 
3750 
49.10 
54.86 
58.22 
70.63 
70.81 

Vibrational assignment 
( 0; 4) 

Al 

B2 71.00 
EZ 77.84 
El 79.82 

0.00 0.00 
25.52 0.00 
37.51 -0.01 
49.12 -0.02 
54.89 -0.03 
58.27 -0.05 
70.72 -0.09 
71.20 -0.39 
71.08 -0.08 
N/A N/A 
N/A N/A 

0% 
1’0 

001 tt200b 
220 

2°0w001b 
3’0ctl’lb 
; 330 

400” 
330 
420” 
1’1” 

‘0,=342.47 cm-‘, zero point energy = SO.99 cm-‘. 
bFermi resonant pair. 
%Iixing involves more than five zeroth-order states. 
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TABLE VI. Converged eigenenergies of the Morse fit potential from Ref. 23 for J=O compared with 
experimental band origins from Ref. 19 and the recent reassignment by Ref. 24. 

Symmetry 

(G”) 

Calculated 

Band origin Vibrational 
assignment 

(cm?) ( 4 4) 

Band type” 

REMPI Spectrum 

Band origin Band type 

(cm-‘) 

AI O.oOb 
El 30.17 

2 41.02 60.34 
Al 64.38 
El 68.44. 
4 79.34 
B2 90.50 
4 90.50 

o”o perpendicular 
1’0 parallel 

OOI” perpendicular 
2% perpendicular 
200” perpendicular 
1’1c parallel 
002” perpendicular 
330c “forbidden” 
330c “forbidden” 

0.0 
31.2 
40.1 

62.9 

perpendicular 
parallel 

perpendicular 
not observed 
perpendicular 
not observed 
not observed 
n&t observed 
not observed 

‘Based on symmetry considerations (see text). 
bDo=371.48 cm-‘, zero point energy =53.52 cm-‘. 
CBend-stretch mixing is still present (see Fig. 6), but strong Fermi resonances do not occur for low-lying 
states. 

fall below some very small cutoff. This procedure was not 
investigated, however, in the present work. For most ap- 
plications, the accuracy of one part in lo6 or lo7 obtained 
here would seem sufficient. 

Values of some basis set parameters used in the calcu- 
lations and their resulting levels of convergence are shown 
in Table III. The third column shows the largest basis set 
used to estimate convergence. The first set of parameters 
shown were found to give better than 0.01 cm-’ accuracy 
for the first eight eigenstates. Run time for a fully coupled 
calculation on a DEC Alpha AXP3000 workstation was 
approximately 200 s. An uncoupled calculation using these 
parameters on the first two k levels required only 30 s of 
CPU time, suggesting that such a procedure could be in- 
cluded inside a least-squares fitting loop if sufficient data 
were available. 

The k-uncoupling approximation was found to be very 
accurate for all the states of interest here on all three PO-’ 
tential surfaces. The off-diagonal elements of the full 
Hamiltonian matrix constructed from the uncoupled states 
were generally smaller than 0.1 cm-‘. The effect on the 
resulting eigenstates is thus very small, as one would ex- 
pect from second-order perturbation theory. The size of 
this effect is shown in Table IV along with a summary of 
results on the empirical potential converged to better than 
0.001 cm-l. 

Vibrational assignments are also given in terms of the 
approximate bend and stretch quantum numbers, with 
multiple assignments denoting near-resonant pairs. The 
resonances are discussed below. The eigenenergies as well 
as the expectation values of geometric parameters from the 
wave functions obtained are in excellent agreement with 
those in Table IX of Ref. 4. 

Results from the global fit and Morse fit potentials are 
shown in Tables V and VI. The results shown are again 
converged to better than 0.001 cm-‘. There is some unex- 
plained disparity between these results and the calculations 
of BludskJj et aL23 on the same potentials. The differences 
are on the order of several wavenumbers for the states 

-220 Adiabatic Full 3D (Exact) 

-240 

El 
Al 

El 
E2 

Al 

,^ ‘E -260 

.s 
P 
8 

I; 
s 
2 
51 

s -280 

Al (2Ol) 76.2 
(O”2) 

- 
Al 75.1 

- 75.0 
- - 74.3 

E2 (420) 71.3 = 
Al (4OO) 70.3 ,- 68.8 

I' 
2' - 65.2 

2' ,- 
- 60.3 

.El (1%) 59.1 -a”’ 

El (3l0) 55.5 -+a,,, 
‘*., 

*a a,- 49.1 
I’ *- 47.8 

,a 

E2 (220) 40.0 
Al (o”l) 39.1 

(2OO) 
-,,;::;,;***l- -,, 

41.0 

El 
Al 

E2 

A1 38.7 I*., ..,, 
1. I- 32.3 Al 

El (110) ‘Jo.8 M-,.o.***~*“‘- 21.4 El 

-300 

Al (OOO) 0.0 -.,a,, ,.a....- 0.0 Al 

-320 vm. (v(,, VS) 
Band 

sym . 

FIG. 3. Correlation diagram for vibrational states on the empirical po- 
tential surface from Ref. 4. The zeroth-order states from the adiabatic 
calculations are correlated with the exact eigenstates of the full three- 
dimensional Hamiltonian. Strong Fermi-type resonances are observed due 
to the near 2:l ratio of zeroth-order stretch and bend frequencies. Only 
the bend fundamental ( 1’0) and the E2 component of the overtone (220) 
have nearly conserved bend-stretch quantum numbers. The states of B 
symmetry are omitted for the sake of clarity. 
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FIG. 4. Fermi-type resonance between the vdW stretch fundamental and the bend overtone on the empirical potential surface of Ref. 4. The zero&order 
states, shown on the left, are calculated using the adiabatic method of Sec. II, which neglects the bend-stretch interaction. State (a) is the adiabatic bend 
overtone at 38.7 cm-’ and state (c) is the adiabatic stretch fundamental at 39.1 cm-‘. The exact eigenstates states (b) and (d), have energies of 32.3 
and 47.8 cm-’ respectively. Bend-stretch interactions couple the nearly degenerate adiabatic states so that the exact eigenstates are almost 1:l mixtures 
of the resonant zeroth-order states. 

shown. There is, however, far better agreement with the 
more recent calculations of van der Avoird.12 A compari- 
son of the calculated eigenergies on the global potential is 
shown in Table V. The only disagreement outside the level 
of convergence estimated in van der AVOWS paper-from 
0.01-0.10 cm-’ for the first ten states-is for the fourth 
state of At symmetry. There is a slight difference in the 
values of the rotation constants which are used, but this 
cannot account for a 0.4 cm-’ discrepancy. The potential 
parameters used here have been carefully checked against 
those of Refs. 12 and 23, so that the direction of the dis- 
agreement seems to indicate that the results shown here are 
better converged. The results on the Morse fit potential are, 
however, in very good agreement. The eigenenergies differ 
by at most ho.01 cm-‘, and the expectation values of the 
geometric parameters agree to all decimal places reported 
in Ref. 12. This agreement is strong evidence that both 
results are essentially correct, since the methods employed 
are completely different and the calculations were per- 
formed independently. 

As mentioned above, the Hamiltonian couples zeroth- 
order bend and stretch states of the same symmetry. In 
several cases, most notably for states on the empirical po- 
tential surface, the coupling matrix elements are larger 
than the zeroth-order separations, leading to large Fermi- 
type resonances. The zeroth-order energies determined by 
the adiabatic calculations enable approximate assignment 
of these resonant states. Using the adiabatic states as a 
basis, we can determine the coupling matrix elements and 
the extent of mixing. These calculations reveal that above 
the first several vibrational levels on the empirical poten- 
tial, a large number of the adiabatic states contribute to the 
exact eigenstates, and the approximate vibrational assign- 
ments become meaningless. 

A correlation diagram is shown in Fig. 3. The tirst 

prominent resonance occurs between the zeroth-order 
stretch (0’1) and the totally symmetric component of the 
bend overtone (2’0). The zeroth order states are nearly 
degenerate with a coupling matrix element of approxi- 
mately 8 cm-‘. This coupling matrix element can be di- 
rectly inferred from the correlation diagram if one assumes 
the dominant interaction occurs only between these two 
states. The strong mixing of the zeroth-order wave func- 
tions in the exact eigenstates can be seen in Fig. 4. For the 
next group of At states beginning at 60.3 cm-‘, the num- 
ber of contributing zeroth-order states increases to about 
seven, completely invalidating the approximate labeling 
scheme. These results demonstrate the possible pitfalls in 
attempting to label experimentally observed bands with vi- 
brational mode quantum numbers or in applying sim- 
ple deperturbation schemes based on two- or three-state 
models. 

The coupling on the empirical potential represents an 
extreme case, since the two normal mode frequencies are in 
almost exact 2:l resonance. However, the same qualitative 
picture holds on the global fit potential (Fig. 5). Coupling 
on the Morse fit surface (Fig. 6) is somewhat less pro- 
nounced because the bend and stretch frequencies are 
shifted out of resonance and the form of the potential ne- 
glects some of the anharmonic terms. The Morse fit poten- 
tial is also cylindrically symmetric so that k is exactly 
conserved. The effects of mixing are still on the order of 
several cm- ‘, however, and thus should be included in any 
attempt to make an accurate comparison between the 
eigenstates of a given potential and experimental data. 

The results from the calculations on the Morse fit po- 
tential may be used to aid in the assignment of the exper- 
imentally obtained RPMPI spectrum. This potential is 
more relevant than the global fit potential for this compar- 
ison because it achieves a better fit to the ab initio points in 
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FIG. 5. Correlation diagram for vibrational states on the global fit ub 
initio potential surface from Ref. 23. The zeroth-order states from the 
adiabatic calculations are correlated with the exact eigenstates of the full 
three-dimensional Hamiltonian. Fermi-type resonances are still observed 
although the zeroth-order bend and stretch frequencies have been shifted 
somewhat out of resonance. Anharmonicity enhances the coupling by 
decreasing the separation of the adiabatic states. The states of B symmetry 
have been omitted for the sake of clarity. 

the region of interest. Only three excited vdW bands have 
been observed experimentally in the ultraviolet spectrum 
and there has been some disagreement in the litera- 
ture’2*‘7J’g*23 over the symmetry and approximate vibra- 
tional quantum numbers of the observed states. One caveat 
is needed in making the comparison between the calcula- 
tions on the ab initio surfaces used here and the experimen- 
tal results. The experiments probe the intermolecular po- 
tential of the benzene’s excited S1 electronic state with the 
additional excitation of the vg vibrational mode of benzene 
to make the W transition vibronically allowed,lg whereas 
the ab initio calculations were performed on the ground 
electronic state of benzene at its equilibrium geometry. The 
comparison may be justified on the grounds that electronic 
rr-+?r* excitation involves only a slight change in the over- 
all electronic configuration and the expansion of the ben- 
zene ring due to the electronic and vibrational excitation is 
small in comparison to the Ar-benzene bondlength. The 

FIG. 6. Correlation diagram for vibrational states on the Morse fit ab 
initio potential surface from Ref. 23. The zeroth-order states from the 
adiabatic calculations are correlated with the exact eigenstates of the full 
three-dimensional Hamiltonian. The band-stretch coupling is evident but 
less pronounced than on the two previous potential surfaces. The states of 
B symmetry have been omitted for the sake of clarity. 

experimental observations that the vibronic excitation is 
only slightly red-shifted (20 cm- ’ ) and causes only a 
slight (0.06 A) contraction of the Ar-benzene bond sup- 
port these arguments. 

In predicting the observed spectrum one must consider 
the symmetry of the vibronic state and vdW vibration. The 
analysis is complicated by the fact that both monomer and 
vdW vibrations can carry angular momentum. The dipole 
moment operators have the symmetries Al and El in the 
body-fixed frame, corresponding to parallel and perpendic- 
ular transitions respectively. The product of the benzene 
vibronic state and the El bend yields species of Al, A2, 
and E2 symmetry, the first of which is accessible by a 
parallel transition from the ground Al state. From the 
Morse fit potential we can thus predict a parallel band to 
lie at 30.2 cm-‘. Similarly, the Al vdW states are expected 
to yield perpendicular transitions, which are predicted at 
41.0 and 64.4 cm-‘. The E2 states can also give rise to 
perpendicular transitions, although these bands may be ex- 
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petted to have a more complicated structure due to the 
coupling of the two vibrational angular momenta. Further- 
more, one may argue that the bend overtone of Ai sym- 
metry is more likely to be observed because it may borrow 
intensity from the stretch fundamental through mixing, 
which we have seen is a prominent feature of the potential. 

The extension of the basis to nonzero J described in the 
Appendix also holds promise for the efficient prediction of 
high-resolution rovibrational spectra. 

On the basis of these observations we may predict that 
the iirst three observable bands will be a parallel band due 
to the bend fundamental, a perpendicular band due to the 
stretch fundamental, and a second perpendicular band due 
to the bend overtone of Al symmetry, at 30.2, 41.0, and 
64.4 cm-’ respectively. The relative intensities of the two 
perpendicular bands will be sensitive to the degree of mix- 
ing through anharmonic coupling. van der Avoird” has 
reached the same conclusion on the basis of similar calcu- 
lations and analysis. These predictions are in reasonably 
good agreement with the experimental results. The three 
experimentally observed bands have been rotationally re- 
solved with origins at 31.5, 40.1, and 62.9 cm-*.1g,24 The 
first of these bands has only recently been definitively as- 
signedz4 as a parallel band with the revised origin of 31.2 
cm -I. The previous assignment as the bend overtone 
(2% or 2’0) could not be reconciled with any of the cal- 
culated eigenspectra, particularly since it was known from 
the rotational structure that the bands at 31 and 40 
cm-’ did not correspond to states of the same symmetry. 
It is interesting to note that this assignment places the 
bending frequency about 50% higher than that observed in 
other Ar-aromatic complexes.22 No explanation for this 
observation is immediately evident. The two remaining 
bands have perpendicular structure and have now been 
assigned as the stretch fundamental and symmetric bend 
overtone respectively,” bringing theory and experiment 
into agreement. 

The eigenstates of the empirical potential show a high 
degree of bend-stretch mixing which completely alters the 
resulting eigenspectrum. This mixing can be understood in 
terms of a near-exact 2:l resonance between the bend and 
stretch frequencies, as revealed by the adiabatic calcula- 
tions. The effect of this coupling is diminished in the spec- 
tra predicted from the ab initio surfaces as the bend and 
stretch frequencies are brought out of resonance, though 
the coupling remains strong enough to shift the levels sig- 
niticantly. Given the ease with which the full three- 
dimensional calculations can now be performed, it would 
seem unwise to use approximate methods when predicting 
vibrational spectra from model potential surfaces when 
such coupling may be in effect. 

Comparison of the results from the Morse fit potential 
with the recently reassigned experimental bands24 shows 
considerably better agreement than has been previously at- 
tained. It is worthy of note that these eigenvalues are ob- 
tained without reference to experimental information on 
the vdW interactions. The combination of high level elec- 
tronic structure and vibrational quantum calculations may 
thus be valuable in predicting and understanding spectra of 
aromatic and other larger vdW clusters. 
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IV. CONCLUSIONS 

Many other methods currently exist for calculating 
vdW spectra with comparable accuracy and computational 
demands. The recent calculations of van der Avoird12 and 
of Mandziuk and BaZ” are just two examples. The use of 
Gaussians has the advantages of simplicity and flexibility. 
It is always easy to construct an efficient basis of Gaussian 
functions which avoids non-physical regions of the poten- 
tial. The method is assured of being accurate and relatively 
straightforward to implement, 

APPENDIX: J#O BASIS SET 

A three-dimensional basis of angular and radial Gaus- 
sians combined with monomer azimuthal rotation func- 
tions has been shown to be highly efficient for the calcula- 
tion of Ar-benzene vdW states. For the strongly 
anisotropic potentials considered here, the low-lying vibra- 
tional states were accurately obtained when the angular 
range of the basis was sharply restricted. The k-uncoupling 
approximation, which one would expect to hold for other 
atom-symmetric top complexes, allows accurate and ex- 
tremely rapid calculation of the lowest-lying vibrational 
states for comparison with experimentally observed bands. 

Calculations at nonzero J yield important information 
about rotational structure and the Coriolis interactions 
that mix vibrational states. In the past these calculations 
have been very *expensive to perform, but van der Avoirdi2 
has recently obbined J#O results relatively easily using a 
three-dimensional harmonic oscillator basis set. Extension 
of the present method should also allow computation of 
the J#O states at a very modest increase in the computa- 
tional cost once ‘the expensive potential matrix elements 
have been evaluated in a J=O calculation. 

Construction of the nonzero J basis functions is 
straightforward. A key aspect of the construction is that 
the J+ Gaussians in R and 8 are retained, which will 
eliminate the need to evaluate any more multidimensional 
integrals. The generalized basis functions are taken to be 
linear combinations of eigenfunctions of the total angular 
momentum J, its space-fixed projection M, and its body- 
fixed projection K. Recall that the 4 angle represents ro- 
tation of the molecular axis system about the body-fixed 
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axis R. Motion in this angle thus represents the projection 
of the total angular momentum onto the body-fixed axis. 
The exact form of the rotational part of the basis functions 
is dictated by the two-angle embedding scheme used to 
derive Rq. (2).25P28 For $arity I will write the part of the 
wavefunction on which J operates in the bra and ket no- 
tation using a symmetric top representation, and I will 
write the part of the wavefunction on which 3 operates in 
the coordinate representation. The remainder of the wave- 
function involves the familiar Gaussians in R and 8. The 
basis functions are then 

(4x1 JMKkpij) = N& 1 JKM) eiK4 eikx 
+ (- l)FJI J-KM) emiK4 emiq 

x I i> I jW, (AlI 
where 

and 

<t?l jKk) =sin lKeklf3 exp[ -AT(O-0,)2]. 

K is a signed integer running from -J to J and k is 
unsigned. The normalization factor NKk is added to nor- 
malize the bracketed portion of the basis function. The 
parity quantum number p takes the values f 1 and is con- 
sistent with the earlier definition for J=O. As before, the 
parity is rigorously conserved, meaning that for states be- 
longing to a degenerate representation, only one p compo- 
nent must be calculated. The effective vibrational angular 
momentum quantum number is now I = 1 K-k I. From 
the symmetry analysis in Tables II and IV of Ref. 4, it can 
be seen that only the subscripts of the nondegenerate rep- 
resentations are affected by the rotational portion of the 
basis functions. The basis set of Eq. (Al) has been con- 
structed so that the symmetry classifications of Table II 
here remain valid for J#O. 

I 

The Hamiltonian of Eq. (5) must now be modified by 
the addition of several terms. The square of the body-fixed 
angular momentum becomes2’ 

i a 
j2Tin 8 de 

a i 
-- si"G -a i 1 

a2 a2 a2 
x ( ~+&r2cose~ * 1 

L42) 

This modified operator introduces no new coupling, i.e. it 
is diagonal in all of the quantum numbers except the indi- 
ces of the Gaussians. Evaluation of the matrix elements 
thus requires only an additional term in the one- 
dimensional integration over 8. The remaining terms arise 
from the dot product in Eq. (2) 

-25 ii= -2&-3,&-s-L, (A3) 

where Z denotes the body-fixed axis and the operators 
have the meanings 

a 
jz=-%’ 

3, I JKM) = K I JKM), 

jst= -iefi4 
1 

a id a 
-cot 8 -+- - a# sineax *ig, 1 

(J’K’M’ 1 j* I JKM) 

Note that the sign convention used @r .?* is opposite to 
the one used in Zare’s book.2g The jzJz term is diagonal in 
K, so the only new coupling arises from the term 
-#?(j+j++.?-j-)/2~R2 in the Hamiltonian, which we 
may identify as the Coriolis operator. The matrix elements 
are 

(J’K’M’k’p’i’j’ I Ha,1 JKMkpij) =6JJISMMtS&pp,NKk NKtkt(i’ I&I i) 

X 6K,,K+l[J(J+1)-K(K+1)]“2(j’K’k~ -Kcot 8+-&+$ I jKk) 
I 

+6Kl,K-,[J(J+1)-K(K-l)]1’2(j’K’kl -Kcot 6+& 

-$ IjKk)]. (A4) 

The matrix elements are thus products of algebraic quantities and one dimensional integrals over Gaussian functions, and 
are not time-consuming to calculate. The Coriolis term will couple states differing by one in K, but will not mix states of 
different parity or k. It will, however, mix states of ditIerent I, giving rise to the commonly known phenomenon of 
rotational Z-type doubling and other more complicated effects. 

The potential matrix elements are given by 
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(J’K’M ’k’p’i’j’ I V( R, 0,x) I JKMkpij) =SJJ~SM,&~~~ NKk NK,k, 

X(L?KK,(i’j’Kk’l V(R,B,X)cos(k-k’)x IijKk) 

+(-l)KfJ 6 p K,,-K(i’j’-Kk’I V(R,B,x)cos(k+k’)x IijKk)). 

(A5) 

The second term should be dropped when k=O. The 
bracketed quantities on the right hand side are now three 
dimensional integrals over the potential and the Gaussian 
functions in R and 8. The symmetry of the potential again 
yields the coupling selection rule of Eq. ( 14) for k and k’. 
States of opposite sign in K are coupled by the V,j and 
higher order terms in the potential. It may easily be shown 
that the potential only couples the effective vibrational an- 
gular momentum according the selection rule 

l&l’=0 mod 6. LW 

Since the integrals in Eq. (A5) depend only on I and I’, it 
is also easy to show from this selection rule that they are 
the same integrals required for the J=O calculation. 

The method of attacking the JfO calculations is now 
easy to see. A J=O calculation is performed and the po- 
tential integrals and eigenstates are stored for use in the 
nonzero J calculations. For the basis states of each sym- 
metry, the matrix elements of the kinetic energy operator 
are evaluated as discussed above. Because each matrix el- 
ement involves only algebraic factors and one dimensional 
integrals, the evaluation of the kinetic energy matrix is very 
fast. The full Hamiltonian matrix is then constructed by 
the addition of the appropriate J=O potential matrix ele- 
ments. The J=O eigenstates may now be used as a basis to 
contract the full Hamiltonian matrix. The appropriate 
J=O states to use in the contraction are those that have the 
same 1 quantum number. Thus to contract the {J= 1, 
K= - 1, k= 1) basis states, one would use the {J=O, 
K=O, k=2) eigenfunctions. The resulting Hamiltonian 
matrix will be nearly diagonal when the Coriolis terms are 
small, as one expects for low J, so the size of the con- 
tracted basis may also be relatively small. The time re- 
quired for such a %uncation and diagonalization” proce- 
dure would again be small compared with the time 
required to compute the potential matrix elements. 

Given the m inimal computational demands of the 
method outlined above, nonzero J calculations should re- 
quire relatively little time above that required for a J=O 

calculation. No three dimensional integration would be re- 
quired, and no large matrices would need to be diagonal- 
ized. 
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