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The X5 Files: Modeling Photodissociation of Molecular Ions in Clusters

Thesis directed by Associate Professor Robert Parson

A model is developed to study the photodissociation dynamics of molecular
ions in clusters and condensed phases. The excess charge on the dissociat-
ing solute molecule couples strongly to the surrounding solvent, so that the
direction and magnitude of charge flow in the excited state becomes critical
to the dynamics. An accurate description of the charge flow is given by an
effective Hamiltonian for the ground and excited electronic states of the solute
that includes the strong solute-solvent coupling. The electronic structure of
the isolated solute molecule is determined using high-level ab initio calcula-
tions, and the resulting eigenstates are used along with spectroscopic data to
parameterize the solute-solvent interactions. The solvent-solvent interactions
are handled using empirical potentials. Electronic relaxation of the excited so-
lute molecule occurs via radiationless transitions between the strongly coupled
solute electronic states. The complete nonadiabatic dynamics are modeled us-
ing classical trajectories that evolve on a single adiabatic electronic potential
surface at a time with hopping between surfaces determined by a semiclassical
algorithm.

The model is applied to study the photodissociation of dihalide an-
ions within molecular clusters, and detailed comparisons with experiments are
given. For both I; Ar, and I; (CO,), the model gives good agreement with
experimental branching ratios for dissociation versus recombination. The role

of anomalous charge flow in the excited state, in which the excess charge lo-



v

calizes on the less solvated atom, is demonstrated in I; Ar, by the ejection
of bare and weakly-solvated I=. There is an even more dramatic effect in
I, (COs), photodissociation, where the coupling between anomalous charge
flow and the solvent funnels trajectories to a narrow region on the potential
energy surface where they undergo nonadiabatic relaxation. Simulations of
time-resolved photoelectron spectra also give excellent agreement with exper-
iment, and demonstrate that the model correctly describes the time scales
for dissociation, recombination, and vibrational relaxation. Preliminary ap-
plication to ICI~(CO,),, clusters demonstrates the importance of asymmetric
solvation for the dissociation dynamics. These and other applications currently
in progress demonstrate the many insights into the fundamental chemistry of

photodissociation that can be gained with this model.



in memory of my grandmother Estelle.
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Chapter 1

The X, Files

“The truth is out there.”
“Trust no one.”

These two mantras from the popular television show “The X Files”
have inspired the work presented in this thesis. It is not that I feel there is a
high-level government conspiracy to thwart our research on the photodissoci-
ation dynamics of molecular ions in clusters—although it has at times seemed
like there was a low-level conspiracy to deny it funding. Rather, I have drawn
inspiration from the idea that fundamental truths lay waiting for discovery
in these systems, truths of which experimental studies have given only a tan-
talizing glimpse. Through the window of molecular simulation, I hoped to
develop a complete picture of these simple chemical reactions, which offer to
tell us a great deal about how the strong interactions between a solute and
its surrounding solvent affect chemistry. The raging paranoia expressed by the
second slogan is a reminder that biases from the past often cloud our interpre-
tation of new information, and to find truth we must open ourselves to new
interpretations, no matter how crazy they seem at first.

The characterization of photodissociation dynamics in many different

solvated environments——clusters, liquids, and solid matrices—is an ongoing



focus of major research. As our experimental knowledge of these systems grows,
so too does the need for theoretical insight, and modeling has become a nearly
equal partner in the efforts to understand these complex dynamics. The goal of
this thesis is to provide a complete model for the photodissociation dynamics
of a diatomic ion inside a molecular cluster or other solvated environments.

Figure 1.1 illustrates the photodissociation of a dihalide anion, I,
inside a small cluster of atoms. The curves represent the potential surfaces of
the isolated molecule, which serve as an approximate indication of the forces
experienced by the dissociating molecule. Following excitation to a repulsive
state, the iodine atoms fly apart and begin to encounter the surrounding atoms.
In some cases, the momentum for dissociation is too great for the solvent to
overcome, and solvated atomic fragments are produced. In other cases, the
solvent atoms arrest the dissociating fragments, producing recombination on
one of the two lower potential surfaces. The last step in Fig. 1.1 illustrates
an important difference between photodissociation dynamics in clusters and in
the condensed phases. In clusters, evaporation of the solvent atoms from the
cluster dissipates the energy released by the photoexcitation and stabilizes the
recombined products. In continuous media, the energy is dissipated through
the excitation of low frequency phonon modes, or soundwaves.

The size of the solute-solvent interactions is greatly magnified in ionic
systems by the presence of excess charge on the solute. One key feature that
differentiates photodissociation dynamics in neutral and charged species is the
flow of the excess charge within the solute (also shown in Fig.1.1), which is
strongly coupled to the motion of the solvent. In diatomic ions there is a com-
petition between the bonding forces, which tend to spread the charge over the

solute molecule, and the charge-solvent interactions, which favor localization
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Figure 1.1: Photodissociation of I, inside a small atomic cluster. Evaporation
of the solvent atoms or molecules is the key mechanism for dissipating the
energy released as the solute dissociates and relaxes.
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of the charge onto a single atom. As the solute dissociates, the localization of
charge drives the solvent towards the nascent atomic ion. At the same time,
this asymmetric reorganization of the solvent begins to exert a strong polar-
izing force on the solute. An unexpected outcome of this interplay between
solute charge localization and solvent reorganization is illustrated in Fig.1.1,
where the charge, which is shared equally at the start of dissociation, flows onto
the less solvated iodine atom, a consequence of the particular properties of the
excited electronic state. In some cases, this anomalous charge flow results in
the surprising escape of a bare I~ ion from the cluster, just one example of the
many complex behaviors exhibited by these systems.

Anomalous charge flow arises when the electronic state of the molecule
has a strongly antibonding character, as illustrated in Fig. 1.2. Consider a
molecule with two electronic states, X~ ---X and X---X". In the absence of
solvent molecules, the bonding interactions give rise to a delocalized charge
distribution in both the bonding and antibonding states, X---X. At long bond
lengths these two states become degenerate. This degeneracy is lifted by sol-
vating one end of the molecule: the ground state is SX™ --- X and the excited
state SX--- X7, where “S” denotes the solvent. At shorter bond lengths the
solvent, polarizes the solvent charge distribution to an extent that depends on
the strength of the solute-solvent interaction relative to the bonding interac-
tion. The direction of polarization depends on the electronic state. In the
ground state the charge flows toward the more solvated end, SX-<-_-X, while in
the excited state the charge flows toward the less solvated end, SX-_?-X, the
anomalous charge flow. It can also be said that this excited state has negative
polarizability. In real molecules, the magnitude and direction of the excited

state polarizabilities depends on the details of the solute electronic structure,
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Figure 1.2: Anomalous charge flow in a diatomic molecular ion. In the bare
ion the charge is shared equally between the two nuclei in both bonding and
antibonding states. When solvation is asymmetric, the charge localizes on the
more solvated atom in the ground electronic state, leaving less charge density
on this atom in the excited state.

which in the halogens is affected by strong spin-orbit coupling.

This discussion demonstrates the need for a sophisticated model to
understand the dynamics of photodissociation of charged species. Because of
the strong interactions between solute and solvent, the model must describe
how the excited state solute electronic structure is affected by the solvent,
which is what gives rise to charge flow. A method for handling the complex
curve crossings that precede recombination in the lower states is also required.
In clusters, the solute-solvent interactions must be handled at a molecular
level, since the dielectric continuum treatment, which has often been used to
simplify these interactions in the condensed phase, is inappropriate for the

highly inhomogeneous solvent configurations that arise.



The remainder of this chapter provides greater context for the de-
velopment of the model presented in this thesis. Section 1.1 presents a brief
review of the work on I, photodissociation, and is followed by a description of
the experiments that have characterized dihalide anion photodissociation. Sec-
tion 1.3 reviews previous attempts to model dihalide anion photodissociation,
which have focused on I, and Br,. Finally, Sec. 1.4 presents an overview for
the remainder of the thesis, describing the model for photodissociation and its

applications to a number of different systems studied by experiment.

1.1 Caging in I, Photodissociation

The recombination of photodissociated I in solution was first ob-
served in the early 1930’s by Franck and Rabinowitch, who called this process
the “cage effect” [1]. Later, Noyes and coworkers carried out systematic studies
of the effect of excitation wavelength and solvent viscosity on the recombination
rate [2-5]. The first time-resolved measurements of I, caging in solution were
made by Eisenthal and coworkers using picosecond lasers [6]. In this experi-
ment a pump pulse excites I, to the B state, which predissociates, eventually
leading to geminate recombination in the ground state. The time scale for
recombination was measured by monitoring the absorption of a probe pulse,
which was time-delayed from the pump. Following photoexcitation, they ob-
served a transient bleach in the probe absorption over the first 20 ps, followed
by a partial recovery of the absorption over 100-200 ps. Although the basic
picture of dissociation, caging, and recombination used to interpret these ex-
periments was correct, the idea that the absorption recovery was monitoring

the rate of diffusively-controlled recombination was later found to be incorrect.



In 1982, Nesbitt and Hynes [7] showed that time scale for absorption
recovery could be accounted for primarily by the slow vibrational relaxation
of I in its ground electronic state. The view of the dissociation dynamics
that has come to be accepted has been described in the review of Harris et
al. [8]. Caging and electronic relaxation to the ground state take place on
a rapid time scale of less than 2 ps and are followed by a slow vibrational
relaxation spanning a range of 50 ps to several nanoseconds depending on
the solvent. The initial misinterpretation of the picosecond experiments made
the important point that theoretical modeling is required to make a definitive
interpretation of these kinds of experiments.

A new generation of femtosecond experiments on I, dissociation is
aimed in part at observing coherent vibrational motion of the dissociating
molecule. Several experiments have observed coherent recoil of Iy from the
solvent molecules in clusters [9, 10] and rare gas matrices [11, 12], and very
recently in gas phase collisions [13]. Perhaps somewhat surprisingly, coherent
motion has not been observed in studies of high pressure gases and liquids
[14-17]. In all of the systems where it has been observed, coherent motion of
I, has been confirmed by molecular dynamics modeling [18, 19].

Models of I, dissociation in clusters and condensed phases have pro-
liferated and been successful in large part because the molecular interactions
can be described by relatively simple pair potentials. The gas phase potential
curves of I, have been well-characterized by spectroscopy [8]. The use of pair
potentials to study atomic and molecular fluids is also well established [20].
The key to the success of simple models, however, has been the ability to treat
the electronic structure of I, which itself is rather complicated, as separable

from the solute-solvent interactions. The underlying reason for this separa-



bility is that the electrostatic nature of the molecule changes very little upon
dissociation or electronic excitation—there is no significant flow of charge for
example—so that the coupling between the solute and solvent is weak. Another
reason for the success of simple models is that the dynamics of primary interest
in the experiments, namely vibrational relaxation, occurs on a single adiabatic
potential surface, so that the difficult issue of nonadiabatic transitions does
not have to be confronted directly.

Despite the relatively weak coupling between I, and its surroundings,
there are a number of problems in Iy dynamics for which adiabatic pair poten-
tials are not adequate. One surprising finding was that a single argon atom
clustered with I, can be sufficient to bring about caging—the “one-atom cage
effect” [21, 22]. The origin of this effect has been the subject of ongoing contro-
versy, in which solvent-induced nonadiabatic couplings have been implicated
as a likely mechanism [23-25]. In larger clusters, liquids, and matrices, the
dynamics on the sub-picosecond time scale following photoexcitation to the B
state are strongly affected by nonadiabatic transitions to predissociative states.
Modeling these nonadiabatic dynamics requires a method for determining the
electronic coupling induced by the solute-solvent interactions. An interaction
model for halogen-rare-gas interactions has recently been developed using the
diatomics-in-molecules approach [25, 26] and used to simulate nonadiabatic
dynamics of I photodissociation in argon clusters [25], liquid xenon [26], and
solid rare-gas matrices [27]. In conjunction with the recent femtosecond exper-
iments, these simulations should greatly enhance our understanding of the role
solute-solvent coupling plays in the early time dynamics following photoexci-

tation.



1.2 Experiments on Dihalide Anion Photodissociation

Photodissociation reactions involving charged species involve much
stronger interactions between the solvent and solute than those involving neu-
tral species. As we saw in Fig. 1.1 and the discussion that followed, the elec-
tronic structure of the dissociating solute is strongly coupled to solvent motion.
Electronic relaxation from the initially excited state to a lower state in which
recombination can occur involves not only a curve crossing, but also a fun-
damental change in the character of the solute wave function, which can be
brought about through electron transfer or solvent rearrangement. Under-
standing the process of dissociation and recombination in ionic systems may
thus provide key insights on the interplay of solute-solvent interactions affecting
far more complicated chemical reactions.

There is also a more practical reason for the recent interest in clus-
ters with ionic chromophores, which is that mass spectrometry may be used
to select specific reactant sizes and provide a detailed analysis of the products.
Systematically varying the size of the reactant cluster produces a detailed mi-
croscopic picture of the effect solvent molecules exert on the reaction under
study. It is often said that cluster properties provide a bridge between the
behavior of the reactants in the gas phase and in continuous media, and it
is true that reaction dynamics in even small clusters may resemble those in
condensed phases, a good example of which is the one-atom cage effect alluded
to earlier. Reaction dynamics in clusters may also exhibit unique behaviors,
which are interesting in their own right and test our understanding of the fun-
damental interactions between solute and solvent. The ejection of less solvated

I~ shown in Fig. 1.1 and discussed more extensively in Chapter 5 provides a
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good example.

Photodissociation of the dihalide anion I is illustrated in Fig. 1.3.
Several experiments on caging of Br, (COsg), and I; (COy), clusters carried
out by Lineberger and coworkers [28, 29] posed a simple question: what is
the effect of microsolvation on the rate of recombination? This question was
addressed by measuring the branching ratios for dissociation and recombination
as a function of cluster size from the bare ion up to clusters with as many as
several dozen CO, molecules, enough to form far more than a complete solvent
shell around the anion. The major finding of these studies was that the caged
fraction rises very rapidly as a function of cluster size, becoming unity by the
completion of the first solvation shell [28, 29], n = 13 for Br; and n = 16
for I;. This was a surprising result given that between 30 and 90% of I,
dissociates in solution [8], and is perhaps even more surprising in light of the
later finding that as much as 40% of I dissociates when excited at the same
wavelengths in polar solvents [30]. The rapid onset of caging in these clusters
has been attributed to the strong electrostatic interactions between the solute
anion and the CO, molecules, although there is so far no explanation for the
difference between the cluster results and those in solution.

Subsequent experiments by the Lineberger group have characterized
the photodissociation of I, in clusters with a variety of other solvent molecules
[31-35] and of the heteronuclear IC1~ in COj clusters [36]. The results for argon
have so far been the best characterized and the most interesting. Besides the
rapid onset of caging and the observation of complete caging by the closure
of the first solvation shell, two new phenomena were observed: recombination
in an excited electronic state and the ejection of minimally solvated I~ ions.

Although the products of these two phenomena were evident from the original
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Figure 1.3: Photodissociation of I, on the gas phase potential curves. The
shorter arrow illustrates the IR excitation used in most of the photodissociation
studies, while the longer arrow indicates the recently studied UV excitation.



12

experiments, the processes giving rise to them were unambiguously identified
afterwards through modeling [27, 37] and time-resolved experiments [38]. The
caging fractions in IC1~ photodissocation also revealed an unexpected result:
a rapid increase in caging with cluster size suddenly peaked at n = 5 and then
rapidly decayed to zero [36]. Solvated Cl~ ions are the only product of ICI~
photodissociation for n larger than 10. A possible explanation for this behavior
based on simulation results is given in Chapter 8.

Lineberger and coworkers have also carried out time-resolved pump-
probe experiments of I; photodissociation in clusters [32, 33, 39-43]. The
overall recovery of the probe absorption is much more rapid than for I in
solution for all the solvent molecules that have been studied, with the exception
of argon. The time scale for complete absorption recovery is about 10 ps for
a complete solvent shell of COy, OCS, and N3O, but on the order of 200 ps
for argon. An explanation for this difference in terms of the much weaker
binding energy of the argon solvent has been given [44] and is discussed in
Chapter 6. The most dramatic result of the pump-probe experiments has been
the observation of a peak at 2 ps in the absorption recovery, which has been
attributed to coherent recombination on the A state (see Fig. 1.3) [41, 42].
This bump appears at similar times in CO,, OCS [45], and NoO [35], but is
absent in argon [43]. Barbara and coworkers [30, 46-48] have also observed
this phenomenon on the same 2 ps interval in solution, and have supported the
assignment of recombination in the excited state using UV probe measurements
[30]. The fact that the bump disappears in the UV probe absorption suggests
that the bump does not arise from probe absorption near the bottom of the
ground state well. Despite this additional evidence, the assignment of the

bump to coherent recombination in an excited state remains unproven given
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the tremendous uncertainties in the spectroscopy of solvated I; at long bond
lengths or in excited states. Banin et al. have also observed coherent vibration
of I, in its ground electronic state following photodissociation of I [49-53].

A method for studying photodissociation in ionic clusters using fem-
tosecond photoelectron spectroscopy (FPES) has recently been developed by
Neumark and coworkers [38, 54]. This technique uses a probe that detaches
the excess electron from the photoexcited cluster. By measuring the kinetic en-
ergy of the detached electrons, Neumark and coworkers determine the electron
affinity of the transient species, which is sensitive both to chemical bonding
interactions within the solute and to interactions between the solute and sol-
vent. FPES experiments on I; Arg have characterized the dynamics of direct
dissociation, while the spectra from I, Aryy photodissociation directly track the
dynamics of electronic and vibrational relaxation. The I Aryy measurements
confirmed the Lineberger group’s observation of long-lived recombination in
an excited electronic state. The most recent FPES studies on 15 (COy), [55]
demonstrate the importance of charge flow in the dissociation of relatively
small clusters (n = 4), where the results of this thesis (see Chapter 7) imply
that the charge localizes onto the less solvated iodine atom, but I~ is prevented
from escaping by its strong attraction to the solvent. Evidence for the tran-
sient formation of a less solvated I~ ion, which is subsequently captured by the
solvent, was seen in the spectral evolution. In I, (CO,):6 the spectra revealed
time scales for transient I~ formation following dissociation, and for recom-
bination and vibrational relaxation. In addition there was some evidence for
transient recombination on the A state on a 2—4 ps time scale, but a definitive
assignment could not be made.

Lineberger and coworkers have also recently studied photodissociation
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of I; in the UV [34], where the excited state correlates to I™ + I*, spin-orbit
excited iodine (see Fig. 1.3). An interesting result of these experiments is that
a relatively small number of solvent molecules, less than a full solvation shell,
is able to cage this highly excited state and induce electronic relaxation down
to the ground electronic state of I;. This is a large solvent effect, given that
the spin-orbit splitting of atomic iodine is about 1 eV. It is also a surprising
result considering that collisional deactivation of I* is very inefficient in the gas
phase [56]. The model described in this thesis also predicts this relaxation in
COs clusters (which has yet not been experimentally observed) and indicates

that state-dependent charge flow is the key to the mechanism [57].

1.3 Simulations of Dihalide Anion Photodissociation

As the problems with interpreting the early I, experiments in solution
pointed out, understanding experimental studies of photodissociation requires
theoretical modeling. This is perhaps even more true for the dihalide anion ex-
periments where the solute-solvent interactions are much stronger and greatly
alter the electronic structure of the dissociating molecule. Because of the large
differences between the neutral and ionic systems, intuition developed from
experiments on I, can be misleading, as we will see below. Experience has
shown that molecular modeling is one of the best methods available for devel-
oping an understanding of previously unexplored dynamics. An accurate model
also allows study of the systems in ways that cannot be explored directly by
experiments.

The first simulations of dihalide anion photodissociation were per-

formed by Amar and Perera, who examined Br; dissociation in argon and
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COg clusters. Until very recently, these were the only studies to examine in
detail the processes of dissociation and recombination; most subsequent stud-
ies have focused exclusively on the dynamics of vibrational relaxation. Amar
and Perera modeled charge flow by assigning a partial charge to each bromine
atom that varied as a function of the bond length: as the molecule dissociated
the charge on one atom decayed to zero while the charge on the other atom
increased to —1. There was an ambiguity in the model in deciding which atom
the charge should localize onto. Amar and Perera identified two cases: one in
which the charge localized onto the more solvated atom, which in subsequent
work [58] has been called “normal” charge switching, and another in which the
charge localized on the less solvated atom—which has been called “anomalous”
charge switching. They found that the dissociation dynamics and the caging
fraction, particular for clusters with only about half a solvation shell, differed
greatly for the two charge switching cases. They also found that the dynam-
ics were quite sensitive to the choice of switching function, which was picked
somewhat arbitrarily because they had no direct knowledge of the electronic
structure of the dissociating molecule. The major limitation of their model was
that because the charge switching depended only on the solute bond length,
the solvent had no direct effect on the solute electronic structure—it could not
polarize the dissociating anion.

Despite the limitations of the model, the early studies by Amar and
Perera have made several important contributions to our understanding of
photodissociation dynamics. First, they showed the importance of structural
caging, in which atoms or molecules at the “cap” positions, i.e. along the solute
bond axis, act as a particularly efficient caging mechanism. Second, and more

importantly, they identified the important role of charge flow in determining
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the dynamics of dissociation and caging. Their suggestions for improving the
model for the anion electronic structure by incorporating ab initio calculations
and a more sophisticated charge distribution greatly influenced the course of
the work reported in this thesis. Finally, they recognized the possible impor-
tance of extended nonadiabatic coupling and suggested using a semiclassical
model to treat the nonadiabatic dynamics, another essential feature of the
model adopted in this thesis. Despite their many insights into the problem of
modeling anion photodissociation, Amar and Perera mysteriously gave up on
the problem, leaving future modeling to others more closely associated with
the experiments.

Picking up where Amar and Perera left off, Papanikolas and cowork-
ers [42, 58, 59] developed a more extensive model for the photodissociation of
I (CO3), clusters. Their major improvement to the previous model was to
allow the solute electronic structure to respond directly to the solvent through
a two-dimensional charge-switching function. This was motivated in part by
their finding that the simple bond-length-dependent charge-switching function
used in previous studies prevented the I; from recombining, a result that was
clearly unphysical. In the spirit of electron transfer theory, they defined a
one-dimensional “solvent coordinate” and used ab initio calculations of I; in
a uniform electric field to fit the charge-switching function as a function of
the bond length and the solvent coordinate. Because of the complexity of
the excited state electronic structure, they decided only to model the ground
electronic state in this way and focus on studying the effect of charge flow
on vibrational relaxation. Simulations of the excited state dynamics used the
ground state charge switching function and were intended only as a means of

preparing an initial ensemble at the top of the ground state well for modeling
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the subsequent vibrational relaxation. Their findings, supported by subsequent
modeling of I; vibrational relaxation by Benjamin et al. in polar liquids [60],
were that charge flow leads to very rapid vibrational energy transfer in the
upper portion of the ground state well and that the overall rate of vibrational
relaxation was very fast, on the order of 1 ps [42, 58]. Given that the over-
all rate for the absorption recovery was on the order of 10 ps, they suggested
that the recombination times in I, were substantially longer than the vibra-
tional relaxation—a reversal of the behavior in the I, system, where vibrational
relaxation was always the rate-limiting step.

An alternative point of view has been presented by Barbara and
coworkers, who have modeled I, vibrational relaxation in solution and the
resulting pump-probe spectra [30]. They have suggested that because of the
Franck-Condon factors only the lowest few vibrational states make substan-
tial contributions to the absorption recovery, which is thus primarily sensitive
to vibrational relaxation at the bottom of the I; well. This explanation re-
quires that the vibrational relaxation is highly nonexponential and proceeds at
a much faster rate at high vibrational energies, which is consistent with both
the Papanikolas [42, 58] and Benjamin [60] studies. Their model also assumes
that the recombination dynamics and initial steps of vibrational relaxation (up
to 50% of the total vibrational energy) occur on a time scale of less than 300 fs.
The differences in the recombination dynamics proposed for the liquid and clus-
ter studies possibly reflect the differences in dynamics between the two media,
likely a result of the much greater density in the liquid. So far, however, there
have been no simulations of the dissociation process in the liquid, so there is no
additional evidence to suggest that 300 fs represents a plausible time scale for

recombination and substantial vibrational relaxation to take place (the cluster
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simulations clearly preclude this possibility). In fact the absorption recovery,
including the placement of the coherent bump at 2 ps, occurs on similar time
scales in both the clusters and liquids. It is therefore quite possible that the
photodissociation dynamics are more similar than has been suggested, and this
is certainly an area where more extensive modeling would be very useful.

Models of I, in liquids have focused entirely on vibrational relaxation
in the ground state. Benjamin and Whitnell studied vibrational relaxation of I,
in ethanol and water using molecular dynamics simulations with a fixed charge
model [61]. Hynes and coworkers have developed a two-state valence bond
model to study the effect of charge flow on the rate of vibrational relaxation
[62, 63]. A simplified version of this model was used by Benjamin et al. [60] in
molecular dynamics simulations, which found that the highly nonexponential
relaxation was a direct result of including the adiabatic charge flow. As in the
work of Papanikolas et al., simulations on the excited state were used solely
to provide initial conditions for the study of vibrational relaxation. Ladanyi
and Parson [64] have also recently studied vibrational relaxation in I, (CO,),
clusters using the Papanikolas model with a CO,; model that allows bending
and found that the vibrational relaxation is only weakly affected by the addition
of intramolecular flexibility in the solvent.

Although the role of charge flow in dihalide anion vibrational relax-
ation is now well established, many questions remain unanswered about the
role of charge flow in the dynamics of caging and recombination. To date no
simulations have demonstrated the coherent excited state recoil that is hypoth-
esized to produce the bump at 2 ps. The rapid onset of caging with cluster
size was only partially explained by the work of Amar and Perera. There also

remains controversy about the time scales for the caging and recombination
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in clusters vs. solution, as well as the unexplained observation of only partial
caging in solution. No simulations of IC1~ photodissociation with its unex-
pectedly low caging fractions have so far been published. Understanding of the
UV photodissociation experiments also requires a mechanism for the electronic

relaxation of the states dissociating to I~ + I*.

1.4 Thesis Overview

It is clear from the previous simulations that a model to answer these
and other unresolved issues in dihalide anion photodissociation must extend
previous treatments in the following ways. First, there must be a complete
model for the electronic structure of the solute interacting with the solvent in
a state-dependent manner. Second—a requirement not explicitly mentioned
above—because of the excess charge the electronic polarization of the solvent
molecules must be included in the model to give realistic interaction poten-
tials. Some previous models have included the solvent polarization, but none
have combined this with an accurate description of the excited state electronic
structure. Finally, the model must go beyond an ad hoc treatment of the
nonadiabatic or surface-hopping dynamics. The work described in this the-
sis represents the most comprehensive effort to develop such a model for the
dihalide anions.

During the course of this development, Batista and Coker [27] re-
ported the first nonadiabatic simulations of photodissociation in I, Ar, using
a semiempirical model for the electronic structure that, while simpler than the
model described here, reproduced the essential dynamics that are also observed

in our model. While this was in some ways disappointing, the fact that two in-
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dependent approaches produced similar results has increased the confidence in
both models. At the same time, their study left open the need to develop new
concepts and approaches to understand the complex nonadiabatic dynamics,
which has been a major focus of our work.

The remainder of this thesis is organized as follows. Chapters 2—4
discuss the model we have developed to simulate photodissociation of dihalide
anions. Chapter 2 describes a general Hamiltonian used to determine the
electronic structure of a manifold of solute states in the presence of strong
solute-solvent interactions. Chapter 3 then discusses how this Hamiltonian is
evaluated for the dihalide anions interacting with CO, and argon, and discusses
generalizations to other solvent molecules. Chapter 4 describes how the dynam-
ics of photodissociation are computed on the the model potential surfaces using
classical trajectories with surface-hopping to approximate the nonadiabatic dy-
namics. Chapters 5-8 present applications of the model to particular systems
of interest—I; Ar,,, 15 (COy),, and ICl" (CO;),. Chapter 5 describes simula-
tions of I, Ar,, photodissociation, demonstrating the accuracy of the model and
providing a definitive assignment of all the observed photofragments. Chapter
6 contains simulations of the time-resolved photoelectrons spectra from I; Ar,
photodissociation, which agree well with experiment and reveal time scales
for dissociation, recombination, and vibrational relaxation in these clusters.
Chapter 7 describes the first complete simulations of I, (COs;),, photodissocia-
tion and discusses the role of charge flow in the excited state dynamics. Finally,
Chapter 8 presents structures for IC1~(CO,),, clusters and makes a preliminary
assessment of their effect on the dissociation dynamics.

The bulk of this thesis describes the potential model and the meth-

ods used to calculate the dynamics, which is an accurate reflection of the time
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I have spent working on this project. As I hope to show in the application
chapters, the model has so far provided many insights into the dynamics of
photodissociation. Collectively, however, these chapters represent more of a
“proof of concept” for the model rather than a complete picture of the dynam-
ics. Further study and development of the model is an ongoing process and

should provide many more insights in the years to come.
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Chapter 2

Effective Hamiltonian for Solvated Molecular Ions

Recent experimental studies of the photodissociation of molecular ions
in clusters [1-5] and in solution [6-12] have highlighted a central issue in chem-
ical dynamics: the influence of solvation on chemical bonding and reactivity.!
In these systems, as the solute ion dissociates the excess charge that was origi-
nally delocalized over the molecule localizes onto one atom. This intramolecu-
lar charge flow is closely coupled to the dynamics of the surrounding medium,
since an asymmetric solvent environment favors a compact atomic charge dis-
tribution over a diffuse molecular one. The magnitude and direction of the
charge flow also depends sensitively on the nature of the solute electronic wave
function, as was discussed in Chapter 1. In bonding states the charge flows
in the direction of greater solvation, while in antibonding states the charge
flows toward the less solvated atom—in other words, the polarizability of an-
tibonding excited states is negative [14-16]. Moreover, a typical open-shell
ion contains several near-degenerate valence states which can be transiently
populated by nonadiabatic transitions during the course of the dissociation.
Classical trajectory simulations of these complex dynamics require an accurate

description of both the ground and the excited electronic states of the solvated

LThis chapter is a modified form of Ref. 13
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ion at every time step. An accurate treatment of the excited states also re-
quires that correlation between the solute electrons be included at a high level.
Since full ab initio molecular dynamics is only feasible for the smallest clusters,
a faster method must be devised. In this chapter an effective Hamiltonian for
the solute electronic structure is derived from an ab initio description of the
isolated solute wave function and an electrostatic model of the solute-solvent
interactions.

A complete description of solvent-solute interactions must incorpo-
rate the electronic polarizability of the solvent molecules as well as their static
charge distributions. This is critically important for solvents having no per-
manent moments at all, such as argon. The first theoretical studies to include
solvent electronic polarizability were based on a dielectric continuum model
of the solvent [17-23]. The most pertinent result of those studies is that the
solute-solvent “dispersion” interaction, which arises from intermolecular elec-
tron correlation, must be included in order to obtain a qualitatively correct
picture of solvation. It is not surprising that the dispersion interaction is im-
portant in solvation, for it is roughly proportional to both the solvent and
the solute polarizabilities [24], the near-degenerate states of the solute being
highly polarizable. Owing to the magnitude of the dispersion interaction, the
usual perturbative treatment [25] cannot be applied. Thus, non-perturbative
approaches had to be devised [18, 19, 21, 22]. Frequently an adiabatic separa-
tion can be made between the fast solvent polarizability and the relatively slow
solute electrons [17-19], considerably simplifying the treatment of dispersion.

Early simulations were restricted to adiabatic dynamics on a single
potential energy surface [8, 14, 26-28]. More recently, nonadiabatic transitions

were included explicitly by Batista and Coker, who studied the photodisso-
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ciation of I, Ar, using a model that includes the solvent electronic polariz-
ability [29]. Their Hamiltonian [29-31] is based on the Diatomics in Ionic
Systems model of Last and George [32], in which the semiempirical Diatomics
in Molecules Hamiltonian is augmented by an operator representing the sol-
vent polarization energy produced by the solute charge. This treatment takes
advantage of the adiabatic separation between solute and solvent electronic mo-
tion to obtain a relatively simple description of the solute-solvent dispersion
interaction. The nonadiabatic transitions, which are essential for a consistent
treatment of the photodissociation and subsequent recombination dynamics,
were included using semiclassical surface-hopping methods [33-36]. Simula-
tions using this model successfully reproduced the experimentally observed
product distributions for the photodissociation of I Ar,, clusters [29].

In recent publications [15, 16, 37] we have briefly outlined a different
approach to this problem, one based on accurate ab initio solute wave func-
tions rather than empirical models of the solute electronic structure. The ab
initio approach offers a superior description of the solute charge distribution,
and can be applied to more complex solute molecules for which an empirical
parameterization of the charge distribution is not feasible. It represents an
extension of the conventional theory of long-range intermolecular forces [38] to
account for the strong polarization of the solute charge distribution and the
exceptionally large solute-solvent dispersion interaction. The model success-
fully reproduces experimental product distributions [15, 16] and time-resolved
photoelectron spectra [37].

The effective Hamiltonian for the solute derived in this chapter al-
lows one to determine how the electronic states of the isolated solute are

perturbed by the polarizable solvent. The approach is explicitly molecular,
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but closely parallels treatments based on continuum dielectric models [17-19].
No assumptions are made about the form of the solute wave function; in-
stead, the Hamiltonian is formulated using the distributed multipole analysis
(DMA) [39-42], which is particularly well suited for dealing with charge densi-
ties that are obtained from ab initio calculations. An important feature of the
effective Hamiltonian is its extensive use of the DMA for transition charge den-
sities [42, 43]—matrix elements of the distributed multipole operators between
two different molecular eigenstates. These transition densities allow the solute
charge distribution to polarize in response to the external fields that act on
it, and thus enable the model to describe solvent-induced charge localization
without adopting a localized representation for the solute basis functions. This
is a significant practical advantage since ab initio electronic wave functions are
often delocalized.

This chapter is organized as follows. The effective Hamiltonian is
derived in Sec. 2.1. The derivation begins with a review of the familiar ex-
pression for the induction energy of the solvent, and goes on to show how this
expression is modified when a solute having several low-lying excited states is
incorporated into the solvent. Section 2.2 discuss the methods used to eval-
uate the matrix elements of the effective Hamiltonian. Further discussion of
the physical approximations made in deriving this Hamiltonian, and of its re-
lationship to previous work, is included in Sec. 2.3. Section 2.4 contains a brief

summary.
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2.1 Derivation of the Effective Hamiltonian

In this section an effective Hamiltonian is derived for the interaction of
the solute electrons with an arbitrary number of polarizable solvent molecules.
Here is an overview of the derivation.

Assuming the Born-Oppenheimer separation between the nuclear and
electronic coordinates, we can express the electronic Hamiltonian for the solute-
solvent system as a function of the nuclear coordinates, using a distributed mul-
tipole (DM) expansion of the intermolecular Coulombic interactions. Since this
expansion neglects the repulsive interactions that arise when different molecu-
lar charge distributions overlap, these interactions are accounted for by adding
a short-range term. The only assumption made about this short-range Hamil-
tonian is that it is unaffected by the solvent electronic polarization. In other
words, we assume that the polarization of the solvent charge distribution is
small enough so that the repulsive interactions due to charge overlap do not
change substantially.

Section 2.1.2 presents a derivation of the induction energy of a po-
larizable solvent possessing permanent electrostatic moments using the DM
notation. Although Stone has previously derived this expression using a per-
turbative approach [41], this alternative derivation forms a useful foundation
for discussing solvent-solute interactions. The induction energy for the solvent
is expressed as the expectation value of the Hamiltonian using a wave func-
tion that is a product of wave functions for each solvent molecule. Since this
Hartree approximation neglects both the intermolecular electron correlation
(dispersion) that arises from electronic motion and the exchange-repulsion in-

teraction arising from short-range overlap, we account for these effects with the
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short-range terms added to the Hamiltonian. The induction energy is obtained
by variationally optimizing the induced multipoles on each solvent molecule,
which is equivalent to optimizing the solvent wave function.

This treatment of the solvent electronic polarization is extended in
Sec. 2.1.3 to include interaction with the solute electrons. An effective Hamilto-
nian operator for the solute electrons is determined by variationally optimizing
the solvent-induced multipoles as before, but with an additional source term
for the solute. This procedure assumes that the solvent electronic polarization
responds instantaneously to the fluctuations in the solute charge distribution
that arise from motion of the solute electrons. This adiabatic separation has
also been referred to as the Born-Oppenheimer limit for the solvent electronic
polarization [19], and its validity is discussed later in Sec. 2.3.3. Essentially,
it requires that the electronic states of the solute ion be much more closely
spaced that those of the solvent, which is usually true for open-shell solute
and closed-shell solvent molecules. Though the resulting effective Hamiltonian
(Eq. 2.15) operates only on the solute electrons, it depends on all of the nuclear
coordinates and on the permanent moments and polarizabilities of the solvent

molecules.

2.1.1 Hamiltonian for the Solute-Solvent System

The electrostatic potential arising from a molecular charge distribu-
tion may be expanded in a multipole series, the convergence of which may be
greatly accelerated by using distributed multipoles instead of a single-center
expansion [39, 40, 42]. In particular, the distributed expansion converges for
points that lie outside of the charge distribution but inside the molecular ra-

dius, where the single-center expansion breaks down. In clusters and condensed
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phases molecules usually pack closely, so that accurate representation of the
electrostatic interactions in this regime is essential.

In the DM expansion, several sites (usually atoms and bond centers)
are chosen within each molecule, and then the multipoles for the entire molecule
are partitioned into contributions from each of these sites. At each site the
moments are expanded to a given order in real spherical tensor moments [44].
For example, the z component of the dipole moment at site ¢ of molecule A is
given by Q7. The single-site multipole expansion can be recovered from the
distributed-site expansion by use of multipole translation operators that shift
the multipoles from all the distributed sites to a common site [39, 45-47].

The intermolecular electrostatic energy for non-overlapping charge

distributions takes the form [41]

Be= 2 Y QMmO (21)
A;,Bj tu

where the sum runs over the sites and multipole orders on each pair of molecules
in the system, and the factor of 1/2 compensates for double counting of the
pairs. The elements of the interaction tensor 1" depend on the intermolecular
distances and orientations. The element TtﬁiBj gives the coordinate dependence
of the interaction between the multipole of order ¢ on site ¢ of molecule A and
the multipole of order u on site j of molecule B. Although the tensor elements
are rather complicated functions for all but the lowest order of multipoles, ex-
plicit expressions for them have been tabulated [42, 44, 48] and they may be
computed efficiently even for high orders [45-47, 49]. Note that T4i4i is always
zero because it is assumed that Coulomb interactions within a single molecule

are accounted for in the intramolecular energy. In what follows, the site in-
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dices and the order-component subscripts are suppressed, and the interaction
between two molecules becomes simply QAT4BQE.

The intermolecular components of the electronic Hamiltonian for the
solute-solvent system may be expanded similarly in terms of distributed multi-
pole operators [41, 42]. The classical multipoles used to obtain the interaction
energy through Eq. 2.1 are simply the expectation values of these operators
with respect to the molecular wave functions. The electronic Hamiltonian for

the solute-solvent system then takes the form
Ho= WO+ Y A
A

1 NAmABAB ~CrmCAAA

+he (2.2)

The indices A and B run over all molecules in the solvent, while C' designates
the solute ion. Upper and lower case operators act on the solvent and solute
electrons, respectively. H and h are the electronic Hamiltonians of the isolated
molecules, while Q and ¢ are the DM operators of the solvent and solute. The
operator h* accounts for short-range interactions that arise from the overlap
of charge distributions of neighboring molecules. As mentioned above, it is
assumed throughout the derivation that B is not affected by polarization of
the solvent and so is an operator only in the solute electronic space, although

it does depend on the nuclear coordinates of both the solute and solvent.
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2.1.2 Induction Energy of the Solvent

In order to demonstrate the variational optimization of the multipoles
induced in the polarizable solvent, we first consider the Hamiltonian for the

solvent, alone. This is given by the second and third terms in Eq. 2.2,

A N 1 N A
Fsolv — ZA HA 4= Z QATABQB
2 A,B

= Hsf el (2.3)

where the short-range interactions have been dropped for simplicity.
It is assumed that the wave function can be written as a Hartree

product,

ooy = T 15 (2.4)

The Hartree approximation neglects intermolecular electron correlation, which
gives rise to dispersion forces. However, except at short range the dispersion
interactions are usually small compared to electrostatic interactions and thus
can be accounted with empirical short-range interactions.

The ground state energy and wave function of the solvent in the
Hartree approximation are determined by varying the single-molecule wave
functions WA) to minimize the expectation value of the solvent Hamiltonian,
(ol | 5o | grolv) - The expectation value of H*Y is expressed as a function
of the permanent and induced moments on each molecule, and then variation-
ally minimized with respect to the induced moments to obtain the induction
energy.

The expectation values of each multipole operator can be written as
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the sum of a permanent and an induced moment,
—A A q A
@R ") = Q" + Q" (2.5)

where the permanent moment Q“ is the expectation value of the operator with
respect to the isolated molecular wave function, and 6Q“ is the corresponding

induced moment. The expectation value of He* is then given by

FR(0Q) = 5 3@ +5QNT Q" +50)
AB

= (Q+6Q) T-(Q+5Q) (2.6

where a convenient matrix-vector notation has been introduced in the second
line. The components of the vector Q and the row and column indices of the
matrix T run over all the solvent molecules.

To account fully for the electronic polarization of the solvent
molecules, the work required to produce this polarization must be added. The
“self-energy” of each solvent molecule, (EA\I:I AWA), may be expanded in pow-
ers of the induced moments. The term linear in §Q“ must be zero, since
otherwise the isolated molecule would possess induced moments. Assuming
that the degree of polarization is small, the expansion is truncated at second

order to obtain:

EQY = B + 5 3 0 o [ 60y (27)

ijtu

where E4 is the internal energy of the isolated molecule A and a?i4i is its

polarizability tensor. The self-energy is expressed in a form that allows for dis-
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tributed polarizabilities relating multipoles of arbitrary order [41, 50]. If the
induced moments are large, hyperpolarizability terms involving higher pow-
ers of the induced moments must also be included in the self-energy. Since
E“ is just the internal energy of the isolated solvent molecule at the given in-
tramolecular coordinates, it may be set to zero for a rigid molecule. For flexible
molecules it is the potential function for the molecule’s internal force field.
The total solvent energy is the sum of the electrostatic and self-energy

contributions,
ESOIV((SQ) — Eintra + %(5Q . ail . (SQ + %(Q + 5Q) -T- (Q + 5Q) (28)

where the matrix notation has been extended to include a solvent polarizability
matrix a. This matrix is block diagonal since it contains no elements connect-
ing different molecules. E™ ig the total intramolecular energy of the isolated
solvent molecules, which is just the sum of the internal energies E4.

Since the energy expression is quadratic in the induced moments,
minimizing it leads to a linear response equation relating the induced and

permanent moments in the solvent,

Q = —[T+a']'-T-Q

—x-T-Q. (2.9)

Here we have introduced the generalized electric susceptibility x, which is

a symmetric tensor. x describes the electronic polarization response of the
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solvent to the generalized potential V given by
V=T-Q. (2.10)

The generalized potential contains the electrostatic potential and its derivatives
(field, field gradient, etc.) at every site in the solvent.

By eliminating the induced moments 6¢) from Eq. 2.8 via Eq. 2.9,
the minimized solvent energy can be written in terms of the susceptibility and

permanent moments,
. 1 1
ESOIV:Elntra+§Q'T'Q_§Q'T'X'T'Q' (211)

The second term in this equation is the electrostatic energy due to interactions
between the permanent multipoles, while the third term is the induction energy
arising from the induced moments. The solvent energy can also be written in

terms of the generalized potential V in the compact form
: 1 1
Esolv — [intra 4 §Q .V — 5V “X - V. (212)

From this expression it is clear that the electrostatic and induction energies
written in the DM notation are simply a generalization of the standard expres-

sions for these quantities in terms of single-center moments.

2.1.3 Effective Hamiltonian for the Solute-Solvent System

The solvent is now allowed to polarize in response to the solute. To
obtain an effective Hamiltonian that operates on the solute electrons, we aver-

age over the solvent electrons while allowing them to respond instantaneously
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to the solute electrons. The resulting expression for he® in terms of the induced

solvent moments is similar to Eq. 2.8,

ileff((sQ) — Eintra-i-ilc-i-ilsr
+%5Q ~at-6Q

H@+i+Q) T-@+i+6Q)  (213)

where the rows and columns of the matrix T have been extended to include
both solvent and solute. Note that the intramolecular term %a - T -q does not
contribute to the Hamiltonian because all the intramolecular elements of T are
zero, and that the vector Q has non-zero multipoles only at the solvent sites,
while q has non-zero multipoles only at the solute sites.

The induced moments on the solvent molecules are obtained by vari-
ational minimization as before. Since the part of Eq. 2.13 that depends on /Q
differs from Eq. 2.8 only by the addition of g to the electrostatic term, it is not

surprising that the induced moments are given by
Q=—x-T-(Q+49) (2.14)

which differs from the linear response of the solvent alone by the addition of the
solute multipole operators as a source term. The induced solvent multipoles
are now given by an operator in the solute space, reflecting the fact that the
solvent electrons adjust instantaneously to the positions of the solute electrons.

Equation 2.14 may be used to eliminate 6Q from Eq. 2.13 giving the effective
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Hamiltonian for the solute-solvent system

ileﬁ” — Eintra+ilc+ilsr
1 . .
+5(@+4)-T-(Q+4q)

~5(@Q+@) T x-T-(@+4). (215)

Introducing the generalized-potential operator arising from the solute, v = T-q,

this can be rewritten as

}Aleff — Eintra + BC’ + ilsr
1 . .
+§(Q+Q) (V+1)
1

—5 (V+8)-x- (V+3). (2.16)

Equations 2.15 and 2.16 express the Hamiltonian for the solute-solvent system
in terms of operators ]Al, ¢ and v that act only on the solute electrons. The
Hamiltonian depends parametrically upon the nuclear coordinates of both so-
lute and solvent. As is discussed in more detail later, the two-electron operator
V- x - Vv has contributions from both induction and dispersion interactions. We
now discuss how the effective Hamiltonian is evaluated by the introduction of

a basis for the solute space and an electrostatic model for the solvent.

2.2 Evaluation of the Effective Hamiltonian

2.2.1 Solute Basis

The effective Hamiltonian, izeﬁ, may be evaluated in any representa-

tion, its eigenvalues depending upon the space spanned by the solute basis but
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not upon the choice of basis functions for that space. A natural choice of basis
is the set of eigenstates of the isolated solute, in which the diagonal elements
of hC are the potential energy surfaces of the isolated solute.

The diagonal elements of heft modify the isolated solute potential sur-
faces to take into account the interaction of each of these states with the solvent,
while the off-diagonal elements allow the solute to polarize in response to the
solvent. In practice it is necessary to truncate the space of solute electronic
states when evaluating hef. For open-shell ionic solutes it is often sufficient
to include only the valence states, since these enable intramolecular charge-
transfer and hence account for the majority of the polarization response. Both
bonding and antibonding states must be included in order to correctly describe
the molecular polarizability.

In applications to solvated I; [15, 16, 37] the lowest six electronic
states were retained, comprising all states that correlate to I~ (*S) + I (*P).
No information about higher electronic states is known either from experiment
or from theory. [51] An additional complication in I, is its large spin-orbit
coupling, which leads to a transition from eigenstates that are predominantly
Hund’s case (a) in character at the equilibrium bond length to states that are
case (c) at large bond distances [51]. Since each state in this open-shell system
has a twofold spin degeneracy by Kramers’ theorem, hefl s represented by a
12 x 12 matrix. Further details of the model Hamiltonian for I, and ICI™ in
clusters are given in Chapter 3.

The eigenvalues of hef are the multidimensional potential energy sur-
faces of the entire solute-solvent system. At each step of a molecular dynamics
simulation 7T is evaluated and diagonalized to give the energies and forces

required to propagate the trajectory to the next step. Details of the tech-
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niques used to compute molecular dynamics trajectories and the nonadiabatic

dynamics on these potential surfaces are given in Chapter 4.

2.2.2 Coulombic Interactions

Evaluation of AT requires a set of permanent multipoles and polar-
izabilities for the solvent and evaluation of the solute DM operators. The
electrostatic properties of the solvent can be obtained from a wide variety of
sources [25, 42, 52, 53]. For a simple solvent such as argon, only the point
polarizability is needed for a reasonably accurate representation. Higher order
polarizabilities and hyperpolarizabilities have a negligible effect on the interac-
tion energy, especially given the uncertainties in the short-range interactions.
For CO4, we have found that a five-site distributed charge model [54], combined
with single-center parallel and perpendicular polarizabilities, [52] provides an
adequate description. Higher order DM [40] and distributed polarizabilities [50]
from ab initio calculations also exist for CO,, but it is not clear that these give
a more accurate description of the intermolecular potential [55].

Parameterization of the solute is more involved. The matrix elements
of the solute DM operators are evaluated directly from the solute basis func-
tions. For I; we found that a four-site DM expansion up to quadrupole order
was sufficient. Although DM’s are widely used to represent the charge distri-
bution of a single electronic state, a key feature of our effective Hamiltonian is
the use of distributed transition multipoles. These off-diagonal DM’s are not
widely available for ab initio wave functions, and we have obtained them by a
minor modification of the interface between Stone’s DMA package and the ab
initio program MOLPRO [56]. Calculation of the DM operators adds a negli-

gible cost to the ab initio calculations. When the calculations are performed
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on a grid of solute geometries—we used 50 points for I; —interpolation can be
used to evaluate both the DM matrix elements and the electronic energy at
arbitrary solute geometries.

The evaluation of the two-electron operator in the solute induction-
dispersion term, v - x - v, requires further elaboration. The one-electron DM
matrix elements q;; are obtained from the ab initio calculation as described
above. By inserting the identity, ), |k)(k|, and restricting the sum to the
basis states of the solute, we can write the matrix elements of the two-electron

operator in terms of one-electron matrix elements,

TMbasis
Gox 9y = vierx vy (2.17)
k

This approximation is consistent with allowing the solute to polarize and fluc-
tuate only in the space defined by the solute basis functions.

Evaluation of the susceptibility tensor x is usually the most compu-
tationally demanding step in constructing hef. When only a single source term
is present, it may be efficient to evaluate the induced moments, 0Q = —x - V,
using an iterative procedure. Because the source term in he is an operator,
however, a different set of induced moments must be computed for each pair
of basis states. In clusters, where the number of polarizable sites is relatively
small, it is therefore more efficient to compute x directly by inverting the ma-
trix [T + a~']. This matrix is positive definite until the onset of polarization
catastrophe, which occurs when the polarizable sites on different molecules are
too closely spaced [57]. Cholesky decomposition [58] is well suited for the com-
putation of x because it is highly efficient and fails for matrices that are not

positive definite, providing a warning that the linear response approximation
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is no longer valid.

2.2.3 Short-range Interactions

The short-range effective Hamiltonian may be split into two compo-

nents,

b = b + Ess (2.18)

where s and S denotes the solute and solvent respectively. The solvent-solvent
interaction energy, Fsg, is assumed to be independent of the solvent wave
function, and so is simply a function of the solvent nuclear coordinates. In
most potential models used for liquid simulations, the short-range interactions
are represented by pairwise atom-atom Lennard-Jones potentials, while the
long-range electrostatic interactions are calculated using distributed charges to
represent the overall charge distribution. Such models, augmented by the in-
clusion of solvent polarizability, are easily applied to the effective Hamiltonian.
Atom-atom Lennard-Jones potentials have been used to represent the short-
range solvent interactions in applications to argon and COs solvents [15, 16, 37].

Determining the short-range solute-solvent interactions is somewhat
more complicated. In general, these interactions will depend on the electronic
state of the solute. The approach adopted in this work has been to adopt
the simplest potential model for the short-range interactions that will fit the
available data from experiments. For both of the solvents that have been
studied so far, state-independent atom-atom Lennard-Jones parameters have
been fit to reproduce the potentials of I and I~ interacting with a single solvent

molecule as determined by high-resolution photoelectron spectroscopy [59, 60].
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These parameters alone were sufficient for I; (CO,),, but it was necessary to
introduce an additional state-dependent term to reproduce the anisotropy of
the I-Ar interaction, which depends on the orientation of the iodine quadrupole

moment [15] (See Chapter 3 for details).

2.2.4 Dynamics on the Model Potential Surfaces

The eigenstates of hef are obtained at each step in a molecular dy-
namics simulation by the following process:

(1) Obtain solute basis state energies and distributed multipole op-
erators from splined data evaluated at the current value of the solute internal
coordinates. The energies of the solute basis states form the diagonal matrix
he.

(2) Compute Coulombic terms in the expression for the effective
Hamiltonian, the last two terms of Eq. 2.15, from the distributed solute mul-
tipoles, the solvent charge distribution, and the solvent polarizabilities.

(3) Calculate the solvent intramolecular energy, £,

(4) Calculate the short-range interactions, BT

(5) Diagonalize heft to get eigenvectors and energies for all states.

(6) If necessary, compute the forces on the current adiabatic state
by calculating the derivatives of the effective Hamiltonian with respect to the

nuclear coordinates R and using the Hellmann-Feynman theorem,

F = —Vr(|h*"|y) = — (4| VRA|1)). (2.19)
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2.3 Discussion

2.3.1 Solvent-solute interaction energy

The electronic energy of the solute-solvent system is the expectation

value of AT with respect to the wave function of the solute,

E(p) = E™ 4 (|hCp) + (|h™ )

+5QV +0Q- (W) + o (vl) -V

1

1 1
—5V XV = Sl xV = VX (w9

_%w‘w‘q/)) X (2.20)

in which the last line involves the scalar product of the second rank tensors
UV and x. The term 1/2(§) - (V) has been discarded since all intramolecular
Coulombic terms are zero. The self-energy (hC) of the solute is evaluated
exactly, rather than in the usual harmonic approximation (Eq. 2.7), because
the higher-order terms are essential for the description of a highly polarizable
molecule. All the terms in Eq. 2.20 containing either the solvent multipoles
Q or the solvent potential V describe electrostatic and induction interactions.

The last term contains both induction and dispersion interactions:

—§<02> X = —5(0) - x {9 induction
1
~3 (V?) — (W)?]-x  dispersion. (2.21)

The induction term describes the interaction of the solvent polarizability with
the average potential arising from the charge distribution of the solute, (V).

The dispersion term arises from the interaction of the solvent polarizability
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with the fluctuations about this average, [(¥?) — (¥)2]. These fluctuations are
due to motion of the solute electrons and may be exceptionally large when two
potential surfaces are nearly degenerate. This is readily seen for the case of
HJ stretched almost to bond dissociation, where the charge distribution fluc-
tuates between H* ... H and H... H", with a mean charge of 1/2 on each atom.
Large fluctuations may occur whenever two Lewis structures are brought into
resonance by solvation effects. Omission of the fluctuations leads to spurious
localization of the excess solute charge on a single atom, [17] since the induction
energy is greatest if all the charge is concentrated at a single point. Because of
the large magnitude of the solute fluctuations, it is essential to include them
to obtain qualitatively correct results [17-19, 23, 61, 62]. This is in contrast
to the much smaller fluctuations arising from the solvent electrons and from
the core electrons in the solute, which are usually absorbed in the empirical
short-range Hamiltonian.

The dispersion term in the energy expression, Eq. 2.21, arises because
the solvent electronic polarization is assumed to respond instantaneously to
fluctuations of the valence solute electrons. Only the solute valence electron
fluctuations are included because of the restriction of the solute basis to include
only valence excitations. If instead the time scales for the electronic motion
in the solute and solvent were comparable, it would be more appropriate to
use a Hartree-product wave function (Eq. 2.4) for the entire solute-solvent
system. The dispersion term would then be absent from the energy expression
Eq. 2.20 and the corresponding Schriodinger equation for the solute would be

nonlinear [19, 63].
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2.3.2 Comparison with other treatments

We can now compare our effective Hamiltonian and energy expression
with previous work on similar systems. We do not attempt to review the
many approaches that have been taken towards incorporating medium effects
into electronic structure calculations, but rather focus on a few studies that
address the problem in which we are interested: a small, highly polarizable
solute dissociating inside a polarizable solvent or cluster.

One popular approach is to treat the solvent as a dielectric continuum
[17-19, 22, 63, 64]. Kim and Hynes [19] have developed a variational expression,
based on a multiconfiguration self-consistent field wave function, for the free
energy of an interacting solute-solvent system. We consider here only the
adiabatic limit (referred to by Kim and Hynes as the “Born-Oppenheimer
limit”) of this theory, in which the solvent electronic polarization is regarded
as fast compared with the electronic degrees of freedom of the solute. In the
adiabatic limit an effective Hamiltonian for the solute may be obtained by
minimizing the free-energy expression with respect to the solvent electronic
polarization. This leads to an effective free energy operator for the solute,

GBO, which may be written in terms of our generalized solute potential 9 as

éBO — iLC + GOF
+ 1+ 4mx®] g P (r)

1 11
_ 5[4w+xel 1] 0.4, (2.22)

where G is the internal free energy of the solvent including the self-energy

and solvent-solvent interactions, x® is the solvent electronic susceptibility, and
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P°r(r) is the orientational polarization of the solvent. In dielectric continuum
models the only solvent multipoles are dipoles, so the generalized solute poten-
tial ¥ is proportional to the electric field arising from the solute at each point
in the solvent. As an aid in comparison with continuum solvent models, the

effective Hamiltonian (Eq. 2.15) can be rewritten as

heff — ilC+ES01V

0- [T+l -0 (2.23)

using the identity

-1

T-lta T '=-T-[T+a'] -T+T. (2.24)

There is a close correspondence between the free-energy operator and
the Hamiltonian, as expected. G°° corresponds to the internal energy of the
solvent, E*, ' corresponds to the solvent polarizability c, and P°*(r) corre-
sponds to the permanent solvent multipoles Q. The free-energy operator and
the Hamiltonian exhibit the same dependence on the solvent polarizability, and
both involve the square of the solute-potential operator, rather than the square
of its expectation value, reflecting the importance of electronic fluctuations
within the solute. It can be shown [64] that the factor 47 in GBO arises from
the mutual interaction between induced solvent dipoles, and plays the role of
the interaction tensor T in A°f.

Most previous treatments of the photodissociation of solvated ions

have described the solute charge distribution in terms of an empirical, local-
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ized basis. For example, the charge distribution for the basis function [I"...T)
is modeled by a single point charge at the I nucleus, and the transition mul-
tipoles (I...I|g|I...17) are set to zero. From our point of view this model
amounts to a monopole approximation to the distributed multipole expansion.
Studies of the energetics [20, 65] and ground-state dynamics [9, 14] of I in
clusters and in solution combined this description of the charge distribution
with empirical potential energy curves of the isolated solute. Localized basis
functions (implied by use of a tight binding Hamiltonian) have also been used
by Garcia, Bennemann and coworkers to study the dynamics of ionized Hg,
clusters [66, 67]. However, in their approach, the solute electric field opera-
tor is replaced by its expectation value, so that their model corresponds to the
“self-consistent” limit in which solute fluctuations are neglected [19, 64], rather
than to the adiabatic limit used here.

The earliest dynamical studies [9, 14] were restricted to the ground
state potential energy surface of the solute-solvent system. Batista and Coker
[29, 31] have gone beyond this restriction to simulate the adiabatic and nonadia-
batic photodissociation dynamics of IsXe,, and I; Ar,, on multiple electronic sur-
faces, using an effective Hamiltonian based on the Diatomics-in-Ionic-Systems
(DIIS) model of Last and George [32]. The DIIS model augments a semiempir-
ical Diatomics-in-Molecules Hamiltonian with an operator that represents the
strong Coulombic interaction of the ionic solute with the electronic polarizabil-
ity of the solvent. The resulting effective Hamiltonian operator is essentially
the same as our effective Hamiltonian (Eq. 2.15), although the derivation and
perspective are very different. Our model differs from theirs primarily in the
choice of solute basis functions. Batista and Coker expand the solute wave func-

tion in a basis of empirical, localized functions such as the |I7...I) function
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described above. The charge distribution corresponding to each basis function
is approximated by a single point charge at the I~ nucleus, and off-diagonal
matrix elements such as (I7...I|9|I...I7) are set to zero. As a consequence of
these approximations the the solute multipole and potential operators, ¢ and
v, are diagonal in the localized basis.

These semiempirical, localized-basis approaches capture the dominant
features of an ionic charge distribution. However, while empirical solute po-
tential curves may be reasonably accurate, empirical charge distributions are
invariably rather crude, especially at shorter bond lengths. For instance, a
single point-charge may adequately describe the charge distribution of |I7...T)
near dissociation, but it becomes an increasingly poor approximation at shorter
bond lengths. The neglect of matrix elements of the multipole operators that
are off-diagonal in the localized basis, which is essentially equivalent to ne-
glect of the overlap between the basis functions, may also be expected to be
inaccurate at short internuclear distances. These approximations introduce
significant errors into the solvated potential surfaces in the neighborhood of
the equilibrium bond length. While it is not easy to predict their effect on the
photodissociation dynamics, some of the most interesting properties of solvated
ions, such as anomalous charge switching on excited states [15, 16|, are sensitive
to the details of the solute charge distribution at the equilibrium bond length.
In contrast, ab initio wave functions may be used to calculate multipoles to
any order, enabling one to build up an accurate representation of the potential
arising from the solute charge distribution. High-level ab initio calculations
may also be applied to molecules with complicated electronic structure, where

a semiempirical valence-bond wave function may not be adequate.
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2.3.3 Validity of the adiabatic approximation

The adiabatic approximation is only valid if the solvent fluctuates at
a significantly higher frequency than the solute [19]. Ideally the solute energy
levels consist of a narrow spectral envelope that is quasi-degenerate with the
ground state and well separated from the more highly excited states. Transi-
tions between states within this envelope give rise to low frequency fluctuations
that may be treated adiabatically. Since it is not always immediately clear
whether the adiabatic separation applies, we now consider the variation of the
dispersion energy with the fluctuation frequency of the solute. For simplic-
ity we use a perturbative approach. Although this will not give quantitative
results for systems exhibiting large fluctuations, it is sufficient to determine
whether the adiabatic approximation may be used.

The solvent’s response to a fluctuating field is proportional to its
frequency-dependent polarizability, a(w). The usual perturbative formula for

the dispersion energy [25] between two molecules A and B may be written as

Edispersion —
1 A A A
5 S TP I GIQN0)TA P (AER)
i€A
I Am A
=52 T*0IQ7) (IR |0) T ™o (AEg) (2.25)
jEB
The first term of this expression contains fluctuations due to molecule A and
the frequency-dependent polarizability of molecule B, while in the second term
the roles of molecules A and B are reversed. The fluctuations arising from
molecule A, (0]Q*:)(i|Q4|0), occur at frequencies AE{} corresponding to elec-

tronic transitions from the ground state to excited states |i). The response
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of molecule B is proportional to o?B(AE), its polarizability at the charac-
teristic frequency for fluctuations in the other molecule. At zero frequency
aBB(w) is equal to the static polarizability. As w increases, a®?(w) increases
monotonically until it diverges at the first electronic transition frequency of
molecule B. The formula given above is not valid at the resonant frequency,
but we are chiefly concerned with the lower frequencies that characterize the
solute. At low frequencies, the frequency-dependent polarizabilities may be
replaced by static polarizabilities, in which case the above expression reduces
to a perturbative approximation to the adiabatic limit. More generally, the
adiabatic separation may be used whenever the solvent’s frequency-dependent
polarizability is approximately equal to its static polarizability over the range
of fluctuation frequencies exhibited by the solute.

As an example we consider the solute I;, in the solvents argon,
carbon-dioxide, water, ammonia and benzene. The wave function of solvated
I5 is expanded in a basis consisting of the six lowest states of isolated I;. The
solute fluctuates at frequencies corresponding to electronic excitations, and the
highest electronic excitation in the six-state model [15] occurs at 3 eV. As the
frequency is increased from 0 eV to 3 eV, the polarizabilities of argon [68],
carbon dioxide [69], and water [70] increase by 3-4%, while ammonia [70] and
benzene [71] show a 6-7% increase. The adiabatic approximation to the dis-
persion energy will be in error by roughly 3-7%, and this is accurate enough for
most purposes. The error introduced by the adiabatic approximation increases
rapidly with the frequency of the solute fluctuations. At 5.5 eV the polar-
izabilities of argon, carbon dioxide and water are 13-19% greater than their

static values, and the polarizabilities of ammonia and benzene have increased

by 42-46%.
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2.4 Summary and Conclusion

We have derived an effective Hamiltonian for the electronic structure
of a solute interacting with an assembly of polarizable solvent molecules. The
potential surfaces for an envelope of solute electronic states are determined by
diagonalizing the effective Hamiltonian matrix in a basis of low-lying electronic
states of the isolated solute. Coulombic interactions between the solute and the
solvent are assumed to dominate the potential surfaces, which is appropriate for
both ionic systems and highly polar systems. Distributed multipoles are used
to describe the solute charge density operator and the solvent’s permanent
charge distribution, while distributed polarizabilities describe the electronic
polarization of the solvent. Short range interactions arising from overlap of
molecular charge distributions are treated empirically.

The effective Hamiltonian consists of the five terms given in Equa-
tion 2.16: E™T describes the solvent internal degrees of freedom, and is taken
to be zero for the case of rigid molecules; iLC, the Hamiltonian of the isolated
solute, is a diagonal matrix containing the potential surfaces of the isolated
solute basis states; R incorporates the short-range forces arising from overlap-
ping molecular charge densities and is fitted to reproduce the known features of
the experimental potentials; $(Q + @) - (V + ¥) contains the interactions of the
solute and solvent charge densities with the potential created by the permanent
multipole moments of the solvent; and —1 (V + 9)-x-(V + 9) represents interac-
tions of the solute and solvent charge densities with the electronic polarization
of the solvent, which is assumed to respond instantaneously to fluctuations of
the valence solute electrons.

The form of the effective Hamiltonian allows a detailed potential
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model of the solute-solvent system to be constructed from high-level ab ini-
tio calculations of the ground and excited state wave functions of the isolated
solute. It is not necessary to assume a particular form (e.g. valence bond)
for the solute wave function. Preliminary applications to photodissociation of
IS in clusters of argon and carbon dioxide have shown good agreement with
experiment and have deepened our understanding of the underlying dynam-
ics [15, 16, 37], as Chapters 5-7 discuss. A major finding of these studies has
been that the dynamics on the excited states depends strongly on the direc-
tion of charge localization, which undergoes a fundamental shift as the molecule
dissociates because of the strong state mixing induced by spin-orbit coupling.
These results indicate that a high-level description of the solute wave function
is required for an accurate description of the solute-solvent interactions and

the resulting dynamics.
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Chapter 3

Model Hamiltonian for Dihalide Anions in Clusters

This chapter discusses evaluation of the effective Hamiltonian de-
scribed in the previous chapter for a dihalide anion in various solvent clusters.
The main goal here is to incorporate the experimentally known features of the
potentials with an accurate treatment of the electrostatic interactions, which
dominate because of the excess solute charge. The solute electronic structure
is determined using high-level ab initio calculations. These ab initio poten-
tial curves of the isolated solute are corrected to agree with the experimentally
known parameters. The corresponding solute wave functions, parameterized in
terms of distributed multipole operators, provide the basis for determining the
electrostatic interactions between the solute and solvent. The solvent is treated
in a more empirical fashion, using distributed charges, point polarizabilities,
and pair potentials. The greatest uncertainty lies in the short-range solute-
solvent interactions, for which only rough estimates of the binding energies are
available. More plentiful data about the interactions of the individual solute
atoms and ions with a solvent molecule are fit to give a pairwise representation
of these interactions, but there remains a substantial uncertainty in the inter-
actions of the dissociating solute with the solvent. Therefore, the only way

to validate these model potentials is by comparison of dynamical simulations
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with the results of corresponding experiments, as Chapters 5-8 discuss.

Although this chapter focuses on I; and ICl™ as solute molecules with
argon and CQO, as solvent molecules, the procedures apply to a range of solutes
and solvents. The ab initio calculations and empirical spin-orbit corrections
used to obtain the electronic structure of I; and IC1™ could be applied directly
to other dihalide anions. A similar parameterization could also be performed
for polar molecules and ions with a limited space for valence excitations. The
only restriction on solvent molecules is that charge transfer or chemical reaction
between solute and solvent not be important in the excitation energy range of
interest.

The chapter is organized as follows. The first section describes the
electronic structure of I, and ICI~ as determined by high-level ab initio calcu-
lations [1] and discusses how the properties of the low-lying electronic states
affect the photodissociation dynamics. Only the first part of this section, de-
scribing the basic solute properties, and the last two parts, describing the
solute wave functions and charge distributions, are necessary for a qualitative
understanding of the system; the remaining sections discuss details of the calcu-
lations and comparison to experiments and previous calculations. The second
section discusses the solvent model for argon and CO,, which includes the
solvent charge distribution, solvent electronic polarizabilities, and short-range
solvent-solvent interactions. The third section describes methods for parame-
terizing the short-range solute-solvent interactions, which is possibly the most
difficult step in determining the model for the system. Although some general
guidelines are discussed, the procedures outlined in this section are the most

system-specific. The final section presents some conclusions.
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3.1 Electronic Structure of I; and ICI™

3.1.1 Basic Properties

The dihalide anions, one electron short of a complete valence shell,
behave like one-electron molecules, with the position of the hole determining
the symmetry of the electronic state. Considering the valence s electrons as
occupying a closed subshell, there are 11 valence p electrons that must be placed
into 6 valence p orbitals—o, 7, 7*, and o*—as shown in the orbital correlation
diagram of Fig. 3.1. In the absence of spin-orbit splitting, there are four distinct
energy levels arising from a total of 12 molecular states, 2 23 and 2 21, which
all dissociate to give a ?P halogen atom and a 'S halide anion. These states
are referred to as the case (a) states because they are the eigenstates of the
solute Hamiltonian, A, when Hund’s case (a) electronic angular momentum
coupling is a valid approximation, i.e. in the absence of spin-orbit coupling. The
potential curves for these case (a) states in I, and IC1~ are shown in Fig. 3.2(a).
There is a single asymptote for the homonuclear dihalides and two asymptotes
for the heteronuclear dihalides, split by the electron affinity difference of the
two halogens. In the homonuclear dihalides there is an additional inversion
symmetry that is broken only by the presence of an asymmetric solvent field.

The Hund’s case (a) curves illustrate several important points. First,
there is a strong attraction in the > bonding state, while the remaining curves
are repulsive or only slightly attractive. Second, the ¥* antibonding state lies
above the II* antibonding state at the equilibrium bond length, R., which
strongly influences the character of the spin-orbit coupled excited states, as
discussed below. Finally, there is a crossing between the >* and II* states at

intermediate bond lengths, which is due to the interaction between the positive
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Figure 3.1: Orbital correlation diagram for X, without spin-orbit coupling
[Hund’s case (a)]. There are six doublet states corresponding to the electron
hole occupying one of the six valence orbitals. The symmetry of the total wave
function is simply that of the orbital containing the hole.

quadrupole moment of the neutral atom and the negative charge of the ion.
This interaction is attractive for the X states, and repulsive for the II states.

In addition to being useful for understanding the electronic structure
of these anions, the case (a) states are important for calculations because most
ab initio programs do not include spin-orbit coupling. In the calculations de-
scribed below, the case (a) states are determined using the ab initio program
MoOLPRO and then used as a basis for computing a semiempirical spin-orbit
Hamiltonian. Because this Hamiltonian takes complex values, it is more con-
venient to evaluate h°T using the case (a) basis states, which are real.

The inclusion of spin-orbit coupling splits the four Hund’s case (a)
levels into six, and lifts the degeneracy of the atomic ?Py/, and Py, states,
giving rise to two asymptotes in I; and four asymptotes in IC1™, as illustrated
in Fig. 3.2(b). An orbital correlation diagram based on the Hund’s case (c)

atomic states is shown in Fig. 3.3. Although the Hund’s case (a) labels are
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Figure 3.2: Ab initio potential curves for IC1~ and I;. (a) Without spin-orbit.
(b) Including spin-orbit coupling. The Hund’s case (a) labels used in (b) are
approximately valid near R,, but become inappropriate as the bond dissociates
(see Sec. 3.1.7). Parameters for the neutral curves were taken from Ref. 2.
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Table 3.1: Electron affinities and spin-orbit splittings of the halogen atoms.

Atom Electron affinity® (eV) Spin-orbit splitting (eV)
F 3.4012 0.0510°
Cl 3.6127 0.1094¢
Br 3.3636 0.4569¢
I 3.0091 0.9427¢
¢ Ref. 3.
b Ref. 4.
¢ Ref. 5.
4 Ref. 6.

still used to describe the curves, only €2, the projection of the total electronic
angular momentum onto the internuclear axis, remains valid. In I, the g and
u parity labels also remain valid.

At long bond lengths, the case (¢) coupling picture completely de-
scribes the states of the system. In the case of atomic iodine 2P /2 and 2p /2
states are split by about 1 eV; other values of the spin-orbit coupling are shown
in Table 3.1.

At bond lengths near the equilibrium separation, the bonding inter-
action is comparable to the spin-orbit coupling, so a hybrid of the case (a)
and case (c¢) pictures governs the states. The case (c) states are a mixture of
the case (a) states with the dominant case (a) state determining the approx-
imate symmetry label. The dominant case (a) state comprises at least 90%
of the wave function at R, (see Sec. 3.1.7), so the case (a) labels provide a
good description near the equilibrium bond distance. This mixing at R, is im-
portant experimentally, however, because the transitions that have been used
to study these systems (see Fig. 3.4) rely on mixing of the ¥* character into

one of the II states for intensity. The perpendicular ¥ — II transition is too



65

49— Q=1/2,u
+Q=3/29

j=3/2 =312

Q=1/29

j=1/2 212

4
4
y

in/é,g

Figure 3.3: Orbital correlation diagram for X, including spin-orbit coupling
[Hund’s case (c)]. There are six doublet states corresponding to the electron
hole occupying one of the six valence orbitals. As the bond coupling increases,
the orbitals indicated by the arrow cross because the upper and lower orbitals
correlate to bonding and antibonding orbitals respectively.
weak on its own to be used in the experiments, while the parallel ¥ — >*
transition moment is always large (see Table 3.5). The mixing is also impor-
tant because the bonding and antibonding character of each state determines
the direction of excess charge flow. The fact that the character of the excited
state wave function changes dramatically as the molecule dissociates plays a
key role in the dynamics, as discussed in subsequent chapters. The importance
of the antibonding states for both the transition moments and the charge flow
demonstrates the need to include all four of the low-lying case (a) electronic
states in the solute Hamiltonian.

The isolated molecule potential curves including spin-orbit coupling

that are used in the simulations of I; and ICl™ photodissociation are shown in

Fig. 3.4. The curves differ from the ab initio curves in Fig. 3.2 in that they have
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Figure 3.4: Scaled potential curves for I, and IC1~. The ground state of each
molecule has been scaled to match the experimental well depths, while the
excited states have been shifted by the same amount to preserve the energy
spacings. The transitions used to excite the solute in the photodissociation
experiments are indicated by the arrows.

been scaled to reproduce the experimentally known well depth in the ground
electronic state, which is 1.01 eV for both I; [7] and IC1~ [8]. Because the
energy gaps between the ground and excited states are in good agreement with
experiment at R, (see Sec. 3.1.6), the excited states are scaled by the same
amount as the ground state to preserve the spacings between states. Details of
the scaling procedure are described in Sec. 3.1.4. Both anions have slight wells
in several of their excited states, which are increased by the scaling procedure.
In I, the A state well depth of 160 meV at 4.0 A is deep enough to create
permanently trapped metastable species, which are observed experimentally
(see Chapter 5). In ICI~ the A state is also slightly bound, but there is also a

more substantial well in the A’ state on which photodissociation occurs. The

role of these features in ICl™ is so far less clear.
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3.1.2 Previous Experiments and Calculations

There is relatively little experimental information about the electronic
structure of I; and ICI™ in the gas phase. Only the ground state potential of
I; has been directly characterized by spectroscopic techniques [7]. The bond
dissociation energies of both anions in the ground state have been estimated
by other techniques [8-12], although there is considerable variation among the
values. Absorption spectra from photodissociation experiments have been re-
ported for the band around 700 nm [8, 13]. The only other gas phase data avail-
able are from dissociative electron attachment measurements [14, 15], which
yield information about the anion curves near the neutral geometry.

For I; the electronic absorption spectrum and the frequencies of sev-
eral vibrational transitions have been measured both in crystal matrices and
solution [16, 17]. Chen and Wentworth [9] have combined the experimental
data for most of the diatomic halogen anions to create semiempirical poten-
tial energy curves for all of the states considered here. Recently, they have
improved these fits by incorporating newer data [18, 19]. It is important to
point out, however, that while these fits combine the available experimental
data, there are no direct experimental measurements of most of the spectro-
scopic quantities that are extracted from these curves. Only the transition
energies, the vertical electron affinities, the bond dissociation energy of the
ground electronic state, and vibrational frequencies of the ground electronic
state have been measured directly. For example, the equilibrium bond length
of the ground electronic state was estimated by summing the ionic and covalent
radii of iodine [18, 19]. It is also unknown what effect matrices or solutions

have on the measurements to which the curves were fit. Zanni et al. have re-
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cently used photoelectron spectroscopy to obtain the first direct measurements
of the equilibrium bond length and the bond dissociation energy [7]. They have
also used a resonance Raman technique to obtain the equilibrium vibrational
frequency. Their measurements have shown that the previous values of R, and
D, were in error by about 5-10%.

Less data is available for ICI~. The only electronic absorption spec-
trum other than the single band cited above was measured in solution by Shida
et al. [17]. The observed peak positions are nearly identical to those reported
for I; in the same work, a result which is inconsistent with the limited gas
phase data [8] and the present calculations.

There have also been few ab initio calculations performed on either
of these molecules, and none, to our knowledge, include the effects of spin-
orbit coupling. The first calculations on both molecules were due to Tasker
et al. [20] with a valence bond method using core potentials and a small basis
consisting of only s and p functions. This is the only calculation of ICI~ of
which we are aware. The excited states were calculated and transition energies
were reported, but without the inclusion of spin-orbit coupling it is difficult
to assess the meaning of these energies. For example, the 2H3/2 and 2H1/2
states of these molecules, which are degenerate in the absence of spin-orbit
coupling, are split by about 0.5 eV. Bowmaker et al. performed calculations
on I, at the SCF level [21]. More recently, Danovich et al. used relativistic
core potentials to perform calculations on I and several other iodo-containing
species [22]. They reported results for the ground state, comparable to our
results but omitting spin-orbit coupling. While their dissociation energies show
fortuitous agreement with experiment, our experience is that inclusion of spin-

orbit coupling reduces the calculated dissociation energies by as much as 50%.
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Gellene and Sharp have also recently performed calculations of the I; ground
state using coupled cluster and density functional methods [23]. Applying a
semiempirical correction for the spin-orbit coupling, they obtain good values
for the I; well depth using the density functional methods but find too shallow
a well using the coupled cluster methods.

We have performed multireference configuration interaction (MRCI)
calculations of the ground and excited states of these ions and incorporated the
effects of spin-orbit coupling by adding an empirical one-electron operator to
the ab initio Hamiltonian. The results represent the most complete theoretical

treatment of these ions to date.

3.1.3 Details of the Ab Initio Calculations

The ab initio calculations were performed with the MOLPRO program
[24], using the internally contracted multi-reference CISD method developed by
Knowles and Werner [25, 26]. The orbitals and reference configurations were
obtained from state-averaged complete active space (CASSCF) calculations
[27, 28] including the lowest two ¥ states, the lowest two II, states, and the
lowest two II, states. The six states arise from the 2P states of the neutral
halogen and the 'S state of the halogen ion. All six states were assigned equal
weight during the orbital optimization.

Effective core potentials were avoided in favor of all-electron basis
sets, largely because of doubts about the accuracy of the available core poten-
tials for iodine. The medium-sized polarized basis sets of Sadlej [29, 30] were
used in all of the calculations. The suggested additional polarization functions
have also been included so that the basis sets are (13s10p4d)/[7s5p2d] and

(19s15p12d4f) /[11s9p6d2f] for Cl and I respectively. In order to roughly equal-
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ize the error in the CISD electron affinities of Cl and I, the orbital exponents
of chlorine’s first contracted d function (0.9528 and 0.3580) have been scaled
by 0.9195. The resulting exponents are 0.8761 and 0.3292.

To reduce the cost of the CASSCF calculations, the inner orbitals of
the dihalides were optimized via a single-reference all-electron SCF calculation,
and then frozen during the CASSCF calculation. During the CISD calculation,
only the six valence p orbitals were correlated. Including the valence s orbitals
in the correlation space had only a small effect, decreasing the well depth for
the ground state of I; by 18 meV, or 2%. We opted to exclude the valence s or-
bitals from the correlation space because basis set superposition error rises very
rapidly with the number of correlated electrons, and is especially problematic
for weakly-bound homonuclear molecules.

Table 3.2 contains the number of active orbitals in the SCF, CASSCF
and CISD calculations. Size consistency errors inherent in the CISD energy
were ameliorated by adding an approximate cluster correction due to Pople
[24]. The charge distributions of the wave functions were obtained using the

distributed multipole analysis (DMA) developed by Stone [31].

Table 3.2: Number of active orbitals belonging to each irreducible representa-
tion of the Cy, point group for ICl™ and L.

molecule method Ay B, By Ao
IC1~ SCF 18 8 8 2
CASSCF 8 4 4 1
CISD 2 2 2 0
I, SCF 26 12 12 4
CASSCF 18 8 8 2

CISD 2 2 2 0
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3.1.4 Empirical Treatment of Spin-Orbit Coupling

The ab initio calculations leave out spin-orbit coupling, which we

include by setting up and diagonalizing the effective Hamiltonian operator
hC = h® + bSO, (3.1)

where A% is the ab initio Hamiltonian and 75© is a semiempirical Hamiltonian
described below. Since spin must be considered, the basis set for this Hamil-
tonian consists of a direct product of the six ab initio spatial wave functions
with the doublet spin functions a and [, resulting in 12 basis states. he is
thus represented by a diagonal 12 x 12 matrix with the ab initio energies in
degenerate pairs on the diagonal.

The spin-orbit coupling between these basis states is approximated

by the one electron Hamiltonian [32]

2
250 « Zas ZBs A
h> = E > <_T?A Lia+ —T?B liB) - Si, (3.2)

where Ly is the orbital angular momentum of electron ¢ about nucleus NV, etc.
In principle, the matrix elements of this operator could be evaluated exactly
from the ab initio wave functions and the spin components. Such a procedure
would, however, be very unlikely to give the correct asymptotic spin-orbit
splittings for the atoms. We chose instead to approximate the Z/r® operators

with the experimental values for the appropriate atomic spin-orbit coupling
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constants, ¢, so that

B8O = Z %2 (CAL‘A + CBiiB) - 5. (3.3)
i

Evaluating this operator involves computing matrix elements of the spin an-
gular momentum operator, which are just the components of the 2 x 2 Pauli
spin matrices, together with matrix elements of the orbital angular momen-
tum operator, which were evaluated exactly using the ab initio wave functions.
Because the radial operator Z/r® decays rapidly as the electron moves away
from the nucleus, matrix elements of the spatial part of the spin-orbit operator
connecting atomic orbitals on different nuclei were set to zero. In practice two-
center integrals were excluded by setting to zero the two-center contributions
to the ab initio one particle density matrices. This procedure gives the ex-
act asymptotic values for the atomic spin-orbit splittings, because the angular
integrals attain their correct values at large internuclear separations. As the
atoms are brought together the spin-orbit coupling varies only because (1) the
energy separations between the basis states change, and (2) the atomic angular
momenta 14 and 1 change. The radial components (4 and (g are held fixed
at the atomic values.

The model also requires the nonadiabatic coupling matrix elements
with respect to the solute bond length. These couplings are also computed in
MOLPRO directly from the ab initio wave functions. They have been computed
for IC17; however, in the case of the states considered in the I, manifold, all
of the couplings vanish by symmetry.

To parameterize the model, the matrix elements of hC are computed

at a series of solute geometries. In the case of IC1™ and I, the lowest six
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eigenstates are computed at a total of 50 geometries. Because RSO is complex
and the remaining terms in hC are real, it is convenient to use the ab initio case
(a) eigenstates as the actual basis states for the model. In this representation
he is diagonal and its matrix elements are simply the ab initio energies, while
hSO has both diagonal and off-diagonal terms. Damped cubic splines are used
to interpolate the values of hC between the grid points.

We employ a simple scaling procedure to adjust the ground state well
to match the best known experimental values. The adjustment is done on the
case (a) curves to avoid extra transformations between the case (a) and case
(c) states. It can be seen from Tables 3.6 and 3.7 that in the region near R,
there is little mixing of the ground case (a) 3 state with the excited states.
Therefore, scaling the X state has little effect on the energies of the excited
states. All of the case (a) states are shifted by the same amount in order to

preserve the energy spacings between the states, which agree well with the

experiments. The amount of the shift is given by

A(R) = (C; 1) (1 _ tanh (R_RC>) VIR - Vi()],  (34)

We

where the parameters ¢, R., and w, are chosen to give the correct well depth
for the ground state without shifting R, significantly (< 0.01A). In the simu-
lations of later chapters, we have not adjusted R, of the ground state to match
the experimental value, although we have compensated for this discrepancy in

simulations of the photoelectron spectra.
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3.1.5 Simulation of Absorption Spectra

Electronic absorption spectra from the ground electronic and vibra-
tional states are computed from the calculated curves and transition moments
using a modified reflection approximation [33] described by Heller [34]. The
total absorption cross section at frequency w from the initial state 7 to the final

state f is given by

o11(w) = Ao V) ar)|” aslaritar) . (35)

where V; is the upper state potential, gr is the classical turning point on the
upper state, and j,;; and 1); are the transition moments and ground state vi-
brational wave functions respectively. For a given w and initial state energy
E;, the classical turning point is defined by fiw = Vy(¢r) — E;. We have ap-
proximated the ground vibrational state by a harmonic oscillator of frequency
we, determined from the calculated ground state curve, a minor approximation
given the small anharmonicities of the ground states (see Sec. 3.1.6). This
method is convenient, and, though approximate, should give good results for
our application. As a test, we have computed the absorption spectrum of IC1~
using an exact time-dependent quantum method and found deviations much

smaller than the expected accuracy of the electronic structure calculations.

3.1.6 Results and Comparison with Previous Work

The calculated ab initio potential curves for the lowest six electronic
states of I; and ICI~ are shown in Fig. 3.2. The curves in part (a) of the figure
represent the raw data from the ab initio calculation, which does not include

spin-orbit coupling. These Hund’s case (a) basis states are used to construct
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the effective spin-orbit Hamiltonian described in Sec. 3.1.4. All of the states
considered here correspond to a hole in a p atomic orbital on either I or Cl. In
the bonding region, this correlates to a hole in either a ¢* or 7* antibonding
orbital, giving rise to the bonding ¥ and II states respectively, or to a hole in
o or m bonding orbitals, giving rise to the X* and II* states. In I; the Hund’s
case (a) basis states are degenerate at infinite separation, corresponding to
[- + I (®P). In ICI~ the asymptotic energies correspond to C1= + I (*P) and
[~ + C1 (*P), and they are split by the electron affinity difference between I
and Cl. The calculated value of this difference, 0.596 eV, compares well with
the experimental value of 0.553 eV [3], though it should be noted that the basis
set was adjusted to minimize the discrepancy.

Tables 3.3 and 3.4 present the spectroscopic constants extracted from
the potential curves and also a comparison with previous experimental and
theoretical results. We have not presented the vertical electron affinities of I
or ICl, because the ab initio calculations do not converge well for bond lengths
much shorter than R.. As can be seen from Fig. 3.2, the equilibrium bond
length of the neutral is in both cases considerably shorter than that of the ion.

Comparison of calculated and measured bond dissociation energies in
the ground state shows that the calculated D, is in error by about 10-20%. This
shortfall is probably due to inadequacies in the one electron basis sets. Teichteil
and Pelissier [35] have reported similar problems in obtaining accurate results
for D, in I,. There is good agreement between the current results without spin-
orbit coupling and the best previous calculation [22], but the good agreement
between the results neglecting spin-orbit coupling and experiment is fortuitous.
Neglecting spin-orbit coupling raises the energy of the asymptote with respect

to the well because the mixing is much stronger at long bond lengths where the



76

Table 3.3: Spectroscopic constants for I .

State T, R, D, We WeZLe
(eV) (A) V)  (em™') (em %)

22;"1/2 current calc. 0.0 3.33 0.905  99.9 0.35
current calc. scaled @ 0.0 3.32 1.013 106.4 0.36
current calc. case (a) 0.0 3.35 1.111  105.9 0.31
prev. calc. w/o s.o.c. 0.0 3.23 1.111  112.6 0.35
semi-empirical ¢ 0.0 3.40 1.113 116 0.37
expt. ¢ 0.0 3.205 1.014 110 0.37

Ty 3/, current calc. 1.16 4.18 0.11 38
current calc. scaled 1.17 3.96 0.16 55
semi-empirical 1.14 4.06 0.200 46

2Hg,1 /2 current calc. 1.71 unbound
semi-empirical 1.55 4.71 0.06 23

°I,3/2 current calc. 1.96 unbound
semi-empirical 1.65 4.67 0.08 27

2Hu71/2 current calc. 2.66 4.79 0.08 25
semi-empirical 2.35 4.33 0.18 40

%), current calc. 3.14 5.40 0.025 12
semi-empirical 3.10 5.24 0.11 24

@ See Sec. 3.1.4. Scaling has a minimal effect on all but the lowest two states.
b Ref. 22. QCISD using relativistic effective core potentials.

¢ Ref. 19.

4 Ref. 7.
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Table 3.4: Spectroscopic constants for ICI~.

State T, R, D, We We
(eV) (A) eV)  (em™') (emY)

221'/2 current calc. 0.0 2.93 0.831 179.5 0.9
current calc. scaled ¢ 0.0 2.93 1.011 195.8 0.9
current calc. case (a) 0.0 2.92 1.068 184.1
prev. calc. w/o s.o.c. ® 0.0 3.07 0.73 159 0.9
expt. ¢ 0.0 - 1.01 —

21, /2 current calc. 1.36  unbound
current calc. scaled 1.37 3.60 0.030 75

T/, current calc. 1.86 4.36 0.14 33
current calc. scaled 1.86 3.73 0.20 68

2%II3/5  current calc. 2.63 unbound
current calc. scaled 2.64 4.11 0.02 45

2’11,/  current calc. 2.86 4.88 0.028 31
current calc. scaled 2.87 4.68 0.031 28

2221'/2 current calc. 3.57 unbound
current calc. scaled 3.58 unbound

@ See Sec. 3.1.4.
5 Ref. 20. Valence bond using small basis set and nonrelativistic core potentials.
¢ Ref. 8.
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Hund’s case (a) states are degenerate. The current calculations overestimate
the experimental value of R, by about 5%. The value reported by Danovich et
al. [22] is closer to the experiment, which may be due to their use of effective
core potentials, or to our neglect of other relativistic effects.

The excited state curves are all unbound or very weakly bound in
comparison with the ground state, as one would expect from simple molecular
orbital considerations. Through comparison with the known bond dissociation
energies of Xej, Chen and Wentworth [18, 19] have suggested that all of the
excited states of I are slightly bound. Given the limits of the current calcula-
tions, we do not expect these wells to be accurately reproduced, and there are
differences between our calculated values and the semiempirical fits.

Simulated absorption spectra for I; and ICl™ are shown in Figs. 3.5
and 3.6. In I there are two prominent bands at about 750 and 400 nm. The
400 nm band corresponds to a charge transfer transition and is much more
intense than the band at 700 nm, which borrows its intensity from the 400 nm
band. The weak band at about 1100 nm arises from a perpendicular ¥ — II
transition. In ICI™ there are three prominent bands. The charge transfer band
at 350 nm is by far the most intense, with the other two bands deriving their
intensity through mixing of ¥ and ¥* character. This intensity borrowing
is substantially weaker in IC1~. There are also two very weak perpendicular
transitions at about 500 and 900 nm.

Direct comparison of the simulated spectra with experimental data
is shown in Table 3.5. For the three optically allowed transitions of I, the
agreement is quite good. Particularly encouraging is the agreement with the
positions, widths, and absolute cross sections of the 2II; /2 absorption bands

observed by gas phase photodissociation [8, 13]. Because the ¥ — II transition
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Figure 3.5: Calculated absorption spectrum from the ground state of I, . Inset
shows the weak infrared band due to the perpendicular transition to the ?II, 3 /2

state.
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Figure 3.6: Calculated absorption spectrum from the ground state of ICI .
Inset shows the weak infrared band due to the perpendicular transition to the
*Tl3/, state.
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moment is very small, almost all the oscillator strength of this band is derived
from II <+ ¥* mixing induced by the spin-orbit coupling. The absolute cross
section should thus be sensitive to the extent of this mixing, and the good
agreement, to within the reported experimental error, suggests that it is correct
at R.. The case (a) character of the wave functions is shown at several bond
lengths in Tables 3.6 and 3.7. The 2H1/2 state has 9.8% X* character in I, but
only 1.6% ¥* in IC1~, which accounts for the six-fold reduction in the intensity
of this band relative to the X, band in going from I, to ICI".

There is significant disagreement in the excitation energies to the two
excited states of I, symmetry in I;. This transition is dipole forbidden, so its
appearance at 585 nm (2.12 eV) in the matrix absorption spectra means that
the crystal field must be causing significant mixing with states of g symmetry.
It is not known whether this mixing shifts the energy of the II, state signif-
icantly, or whether the state involved is the II,3/o or the II, ;2. Chen and
Wentworth [9, 18] have assigned the 585 nm transition to the I, ;/, state, but
if the assignment were changed to Il 3/2, the agreement with our calculations
would be considerably better. There is evidence from the solution data [17] for
an additional absorption band around 480 nm (2.58 €V), which supports this
re-assignment.

There is also some disagreement between the calculated absorption
spectrum for IC1~ and the spectrum measured in solution [17]. The solution
data show almost no shift in the spectra between I, and IC1™, which disagrees
qualitatively with the current calculations. The origin of this discrepancy is
unknown, but the good results for I, combined with the good agreement for the
211, /2 absorption of ICI™ measured by photodissociation provide some weight

for the validity of the current calculations.
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Table 3.5: Calculated absorption spectra from the ground electronic state com-
pared with experimental results.

Excited State Peak Position Omax FHWM Total intensity
(eV)  (nm) (A?) (eV) (relative units)
I 2Hg’3/2 calc. 1.16 1070 0.0016 0.16 1/280

matrix ¢ 1.08 1150 0.19 1/56
solution ? 1.20 1030

2Hg’1/2 calc. 1.69 736  0.43 0.18 1.0
matrix 1.55 800 0.22 1.0
solution 1.68 737
direct ¢ 1.65 750 0.5 0.18

8, cale 312 397 13 035 5.6
matrix 3.10 400 0.55 6.1
solution 3.13 395

ICI~ 2H3/2 calc. 1.36 914 0.00015 024 1/7

solution 1.20 1030

2H1/2 calc. 1.83 676 0.039 0.25 1
solution 1.68 737
direct ¢ 1.77 700 0.039 0.23

221'[3/2 calc. 2.66 467 0.00097 0.46 1/22

221'[1/2 calc. 2.83 438 0.068 044 3.0

2221'/2 calc. 3.59 346 0.63 0.56 36
solution 3.22 385

@ Ref. 16. ® Ref. 17. ¢ Ref. 13. ¢ Ref. 8.
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Table 3.6: Case (a) composition of the spin-orbit coupled states of I; as a
function of the bond length.

% Basis Function Character

State R (A) S s I, IT*
I R, 95.9 0.0 0.0 4.1
5.3 7.7 0.0 0.0 22.3
00 66.7 0.0 0.0 33.3
My 3/ R, 0.0 0.0 100.0 0.0
5.3 0.0 0.0 100.0 0.0
o0 0.0 0.0 100.0 0.0
M1 /2 R, 0.0 9.8 90.2 0.0
5.3 0.0 63.4 36.6 0.0
o0 0.0 66.7 33.3 0.0
Ty 3/2 R, 0.0 0.0 0.0 100.0
5.3 0.0 0.0 0.0 100.0
o0 0.0 0.0 0.0 100.0
My /2 R, 4.1 0.0 0.0 95.9
5.3 22.3 0.0 0.0 7.7
o0 33.3 0.0 0.0 66.7
T R, 0.0 90.2 9.8 0.0
5.3 0.0 36.6 63.4 0.0

00 0.0 33.3 66.7 0.0
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Table 3.7: Case (a) composition of the spin-orbit coupled states of IC1~ as a
function of the bond length.

% Basis Function Character

State R (A) ) DR II IT*
R R, 96.6 0.0 2.8 0.6
5.3 68.6 3.9 25.7 1.8

66.7 0.0 33.3 0.0

235 R, 0.0 0.0 99.0 1.0
5.3 0.0 0.0 96.9 3.1

0.0 0.0 100.0 0.0

2 R, 2.4 1.6 94.0 2.1
5.3 17.0 47.3 24.4 11.4

00 0.0 66.7 0.0 33.3

22113/ R, 0.0 0.0 1.0 99.0
5.3 0.0 0.0 3.1 96.9

0.0 0.0 0.0 100.0

2211, /o R, 1.0 3.6 1.1 94.3
5.3 0.1 28.6 7.6 63.0

0.0 33.3 0.0 66.7

2%}, R, 0.1 94.8 2.1 3.0
5.3 13.7 20.2 42.4 23.8

33.3 0.0 66.7 0.0
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One final point of contention arises from the assignment of the Hund’s
case (a) labels in dissociative electron attachment experiments [14, 15]. In these
experiments, the fragment angular distributions show no evidence of mixing
of different A states by spin-orbit coupling. This result is consistent with
our observation that the Hund’s case (a) character becomes dominant as the
bond is shortened. In both studies, however, the highest energy peak has been
assigned to a state of II symmetry, in direct contradiction with the current
calculations and other assignments based on the absorption spectra [9, 16, 18].
A crossing of the ¥* and II* states cross at bond lengths shorter than R, could
account for this observation, but there is no evidence of such a crossing in
the current calculations. Nevertheless, the absorption data and the current
calculations strongly support the assignment of the highest electronic state as

predominantly 3 in character at R..

3.1.7 Mixing of the Case (a) States Due to Spin-Orbit Coupling

The mixing of the case (a) states by spin-orbit coupling has been
tabulated for each state of I, and ICI™ at several bond lengths in Tables 3.6
and 3.7. Because (2 is a conserved quantum number, there is no mixing between
¥ and II states at any bond length for the 2 = 3/2 states. The Q2 = 1/2 states,
however, can be strongly mixed as the bond length increases from R.. There
is a competition between the bonding interactions, which favor the case (a)
states, and the atomic spin-orbit coupling, which favors the case (c) states.
At R, of the ground electronic state, the bonding interactions dominate, with
the case (a) character accounting for about 90% of the wave function in I3
and about 95% ICI~. For the ground electronic states, which are energetically

well-separated from the remaining states, the mixing is especially small. There
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is substantially more mixing in I; than ICl™ because the spin-orbit coupling
is large for both atoms, and this accounts for the much larger cross section of
the experimentally important ground state transition to the 2II; /2 state around
700 nm.

Even a small extension of the solute bond can bring about a large
change in the character of the solute wave function. The 2Hg,1/2 state in I,
and the ?II; , state in IC1~ each change from being over 90% II in character at
R, to predominantly ¥* at 5.3 A. The polarizability of an antibonding state is
negative, meaning that the electric field and the solute polarization are 180° out
of phase. Thus, the polarizability of the excited states is extremely sensitive
to the bond length, changing sign in this case between 3 and 5 A. The other

(2 = 1/2 states also undergo substantial changes in character, most notably the

’Y, /s (2257, in ICl"), which is predominantly IT in character at long bond
lengths.

The strong solvent electrostatic fields in clusters and condensed phases
further mix the solute wave functions, as we will see in future chapters. The
mixing of the solute wave functions induced by spin-orbit coupling will be

critical for understanding the dynamics of photodissociation.

3.1.8 Solute Charge Distribution

The solute charge distribution is parameterized using the distributed
multipole operators discussed in Chapter 2. The matrix elements of these op-
erators are determined for each geometry at which the ab initio wave functions
are calculated. When the bonding interactions are strong, the multipoles are
distributed over four sites—one on each nucleus and two at equidistant points

along the bond axis. At longer bond lengths, the bond sites are gradually
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damped using a hyperbolic tangent switching function to reflect the localiza-
tion of the wave function onto the nuclei. Multipoles through quadrupole must
be included at a minimum because the open-shell halogen atoms have a sub-
stantial quadrupole moment that interacts strongly with the solvent, as we
discuss in more detail below. The quadrupole moments for the valence p or-
bital in Cl and I from the ab initio calculation are 3.03 and 1.74 atomic units
(4.08 and 2.34 Debye A) respectively.

The absorption spectra discussed in Sec. 3.1.6 above provide the only
direct test of the accuracy of the calculated multipole operators. There is ap-
parently good agreement for the magnitudes of the parallel transition moments
from the ground electronic state at equilibrium separation. There is also some
evidence that the calculated perpendicular transition moments near R, are too
small. Table 3.5 suggests that perpendicular transitions should be several or-
ders of magnitude less intense than the parallel transitions, and yet preliminary
measurements of the probe absorption at very early times (< 200 fs) indicate
a strong perpendicular component [36].

Aside from these measurements, the only way to determine if the
charge distributions of the dissociating molecule are correct is by comparison
of simulations to photofragmentation and pump-probe studies of photodissoci-
ation in clusters. Obviously, these measurements are sensitive to many factors
other than the distribution of solute charge, so it is difficult to test particular
components of the model. The overall agreement, however, is quite good, as
we will see. There is also a growing body of evidence that the primary feature
of the excited state charge distribution, namely anomalous charge switching,

is a central component of both the model and the real systems.
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3.2 Solvent Model

The solvent can be represented classically by distributed multipoles
and polarizabilities. For both cluster solvents we have studied so far, argon
and CO,, we have found that distributed charges and single site polarizabil-
ities are adequate for creating realistic interaction potentials. For argon, the
electrostatic model consists of a single dipole polarizability, which is set to the
experimental static field value. Five distributed charges are used for the CO,
model, where the charges are taken from Murthy et al. [37]. These charges
reproduce the quadrupole moment of CO,, and in conjunction with Lennard-
Jones sites on the atoms give interaction potentials that reproduce the experi-
mentally observed structures for the dimer and trimer of (CO,),, clusters [38].
The polarizability of CO, has negligible effect on the solvent-solvent interac-
tions but has a strong interaction with the solute anion. The model includes
a single site on CO4 with different polarizabilities parallel and perpendicular
to the bond. The values for all of the parameters used to describe the sol-
vent charge distribution, the solvent-solvent interactions, and the short range

solute-solvent interactions described in the next section are shown in Table 3.8.

3.3 Short-Range Solute-Solvent Interactions

The model Hamiltonian has been constructed under the basic assump-
tion that electrostatic terms will dominate both the long-range interactions and
the mixing of different solute states. The remaining terms, arising from disper-
sion and repulsion, provide the shape and energetics of the short-range inter-
action potentials. In general these terms will depend on the electronic state of

the solute, but we expect that if the electrostatic terms are large, as they are



Table 3.8: Potential parameters for I Ar,, 15 (COs),, and ICI~(CO,),.

Ar model
Polarizability®
gy = Oy = Qz, (A3) 1.642
Dispersion pseudo-charge
qaisp (au) —20.0
Induction damping®
Rda.mp (A) 3.57
Waamp (A) 0.529
LJ parameters o (A) € (meV)
Ar—Ar¢ 3.347 12.2
Ar-1 3.662 15.9
CO2 model
Molecular geometry
Rc o (A) 1.16
Charge distribution® charge (au) distance from C (A)
@ =gs 0.1216 1.523
Q2 = q4 —0.6418 1.066
q3 1.0404 0.000
Polarizability®
a,, (A3) 4.487
Qg = gy (A3) 2.127
Induction damping?
Rdamp (A) 2.75
Waamp (A) 0.529
LJ parameters o (A) € (meV)
c-¢4 2.824 2.256
0-0¢ 3.026 6.477
c-0¢ 2.925 3.823
C-1 3.805 16.33
O-1 3.200 12.56
C-Cl 3.349 10.85
0-Cl 2.700 5.633
¢ Ref. 39.
b See Eq. 3.7.
¢ Ref. 40.

4 Ref. 37.
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in ionic systems, the state dependence will be relatively small—too small to
extract from the relatively low resolution spectroscopic data available for ionic
and open-shelled systems. It is therefore justified, we believe, to use empirical
state-independent parameters to describe the short-range interactions, except
when the state-dependence is known to be an important effect.

The basic method of handling the short-range interactions places
isotropic, pairwise Lennard-Jones (LJ) sites on all the nuclei with parameters

fit to match available experimental data,

2" =Y" 4ey (U—lﬂz = 0—6J> (3.6)
i Y \R? RY)’ '

where the indices 7 and j run over all the atomic sites in the system, and the sum
is restricted to include only pairs where the sites reside on different molecules.
Note that since the charge on each solute atom depends on the solute wave
function, having different short-range interactions for the ionic and neutral
atoms requires introducing a state-dependent interaction. It is not obvious,
however, that a set of LJ parameters that gives a correct overall potential for the
I ---CO, interaction will also give the correct interaction for I- - - CO4, because
one would expect the presence of the extra electron to change the effective size
of the iodide. Our procedure is to start with the simplest empirical description
of the potentials, as given by Eq. 3.6, and modify these as is warranted by
the available data. We have found that it is not necessary to change the
LJ parameters going from I~ to I in order to get a fit to the experimental
interaction potentials. In the case of the I--- Ar potentials, however, we have
found that an anisotropic and state-dependent dispersion term must be added

to reproduce the experimental potential curves, as we also discuss below.
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An important limitation of the data available for these systems is that
little is known about the interactions of the diatomic solute with the solvent
molecules. A rough estimate of the binding energy has been obtained from
photofragmentation studies [13, 41], but no spectroscopic data is yet available.
Therefore, all of the solute-solvent potentials are fit to the better-known inter-
actions between the solute fragments and the solvent molecules. It is hoped
that by fitting potentials to the I --- Ar and I- - - Ar interactions, for example,
that the potential for I, - - - Ar, where each I atom is approximately halfway be-
tween and I and I~ in both size and charge, will be correct. Because we include
the electrostatic effects at a high level, we are only relying on the assumption
that the short-range solute-solvent interactions are not dramatically altered by
the chemical bonding within the solute. There is, unfortunately, no direct way
to test the accuracy of the potentials, and we must rely on comparison with the
photofragmentation and pump-probe data to determine if our model of these
systems is realistic.

A combination of scattering data and photoelectron spectroscopy has
been used to determine potentials for neutral and negatively-charged halogen
atoms interacting with various solvent molecules [42, 43]. The bond lengths
from these fits are accurate to a few percent, while the binding energies are
known to about 5%. Given that the binding energies for the solute-solvent
pairs are on the order of 10-500 meV, terms that contribute only a few cm™!
to the energy have little influence on the fit.

All of the terms used to fit the short-range interactions are pairwise-
additive. There is little data for these systems sufficient to resolve the small
many-body dispersion terms. The only data on many-body interactions of di-

rect relevance to the model is the study of I” Ar,, potentials made by Yourshaw
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et al. [44]. They found that many-body induction was the major contributor
to the many-body interaction—about 15% of the total interaction energy—
while many-body exchange and dispersion terms had an effect of at most a
few percent. Since our model does treat the many-body induction accurately,
inclusion of short-ranged nonadditive effects does not seem warranted.

A well-known problem in many-body polarization models is the sin-
gularity that arises when polarizable sites too closely spaced [45]. One solution
to this problem to damp the polarization interactions at short bond lengths

using a simple radial function,

2R) = [tanh (m) + 1] , (3.7)

Wdamp

which is applied to each interaction tensor element connecting each pair of
polarizable sites [46]. The parameters Ryamp, and Waamp are chosen to have a
small effect near equilibrium separations but to turn on damping rapidly when

the charge clouds are penetrated. Values of these parameters are shown in

Table 3.8.

3.3.1 Argon

Accurate interaction potentials for I7---Ar and I(*P)---Ar are
known from a combination of scattering and ZEKE spectroscopy experiments
[43]. Fitting the I (*P)---Ar potential is complicated by the fact that this
interaction depends on the orientation of the empty p orbital on the iodine
atom. The anisotropy of the I--- Ar potential is important in the model of
I5 Ar,, because it is the only mechanism that can significantly mix solute states

of different total angular momentum projection 2. There is an anisotropic
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quadrupole induced-dipole interaction, but its magnitude is too small to have
an observable effect.

To determine what terms must be added to the potential, let us con-
sider the model Hamiltonian described so far for the interaction of an iodine
atom with argon, as shown in Fig. 3.7. Iodine is one electron short of a closed
shell, so the three valence states of the atom arise from the electron hole in
one of the three p orbitals. There are two II states with the empty p orbital
oriented perpendicular to the I-Ar axis, and one X state with the hole along
the axis. The model includes the correct atomic spin-orbit coupling that mixes
the ¥ and II orbitals to give the 2Ps) and 2Py, states, which are split by
nearly 1 eV. The LJ sites on the iodine and argon atoms can be fit to give
approximately the correct distance dependence of the interaction, but there is
only a tiny splitting between the j = 3/2 states that arises from the quadrupole
on iodine interacting with the dipole polarizability of argon—this interaction
is proportional to 1/R®. The result is that the two I (*Pj/5) - - - Ar curves are
effectively identical and the interaction is isotropic.

The simplest way to induce a splitting between the Q = 3/2 and
) = 1/2 states is to add a small negative point charge to the argon atom
that interacts only with the quadrupole operators on the solute. To make this
a short-range interaction, we change the R-dependence to 1/RS. The angu-
lar dependence of ion-quadrupole interaction, < Py(cos#), is identical to the
known angular dependence of the I (2P) - - - Ar interaction, because both arise
from a p-shaped charge density interacting with an s-shaped charge density.
We use the quadrupole operators from the solute DMA and fit only the mag-
nitude of the pseudo-charge on the argon atoms, which is given in Table 3.8.

The negative pseudo-charge results from the fact that the interaction is more
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Figure 3.7: Interaction of >P halogen atom with argon. (a) shows that the
state with a hole in the X orbital is lower in energy because the electron density
along the X—-Ar axis is lower, giving less repulsive overlap. The leading order
electrostatic term arises from the quadrupole on X interacting with the induced
dipole on Ar, but the magnitude (oc 1/R®) is < 1 meV. (b) shows the resulting
state ordering when spin-orbit coupling is included. The A quantum number
is not conserved, but the state with more ¥ character is lower in energy.

attractive when the hole orbital points toward the argon atom and repulsive
when the hole orbital is perpendicular to the [-Ar axis. The addition of this
single interaction term to the model gives good agreement with the experimen-
tal potential curves as shown in Figure 3.8. The splitting between the 23, /2 and
the 21 /2 states falls off too slowly in the model potential, suggesting that the
1/R% dependence of the anisotropy used in the model fits is too long-ranged,

but the magnitude of the disagreement is small.
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Figure 3.8: Potential curves for I(*P) interacting with argon. The dashed and
solid lines show a comparison between the model and experimental fits. The
splitting between the 23, /2 and the 211, /2 states falls off too slowly in the model
potential, suggesting that the 1/R® dependence of the anisotropy used in the
model fits is too long-ranged.
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3.3.2 CO,

The I™---CO3 and I- - - CO4 interaction potentials for the T-shaped
configuration are also known to good accuracy from ZEKE measurements [42].
Much less information is available for the chlorine interaction potentials, so
that while the form of the interaction potential is the same as for iodine, the
parameters are not as well determined. All of the discussion that follows applies
equally to iodine and chlorine except where noted.

The anion is T-shaped because of the strong interaction of the ion
with the large CO, quadrupole. The electronegative oxygen atoms are repelled
strongly by the anion, even forcing CO, to bend slightly away from the ion,
which has been observed experimentally [47]. In I7(CO;) the bending is about
5 degrees, but the bending may be as large as 10° in C17(CO,) [47]. This
suggests that the model should allow the CO4 to bend, at least in systems where
chlorine is present. However, given the lack of potential data, we have chosen
to keep CO» rigid in our preliminary simulations of IC1~(COs),. Modeling has
indicated that the bending arises mostly from electrostatic effects rather than
charge transfer [47], suggesting that it will be possible to extend the current
model to include bending in the future. One might expect that for clusters with
more than a few CO; molecules, the extent of the bending will be reduced by
the solvent-solvent interactions, which favor linear CO,. The photoelectron
experiments probe only the T-shaped I- - - CO5 geometries, which are prepared
by detaching an electron from the anion. The linear geometry of the anion is
strongly repulsive because of the ion-quadrupole interaction.

It is thought on the basis of the experiments that there are at least

stable local minima for the neutral T-shape geometries. The electrostatic in-
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teraction between the halogen atom and CO, quadrupoles is proportional to
1/R® and is the leading term in the neutral potential. This term contains the
correct anisotropy to describe the splitting of the three observed neutral states,
which required the additional term in the argon case. The interactions between
the quadrupole on the neutral halogen atom and the quadrupole on CO4 are
illustrated in Figure 3.9. The positive halogen quadrupole is parallel to the
negative COs quadrupole in the Q = 3/2 state, resulting in a more attrac-
tive interaction than in the 2 = 1/2 state, where the quadrupole-quadrupole
interaction is unfavorable. The situation is reversed in the linear geometry.
We have obtained good fits using the four LJ parameters associated
with the pairwise atomic interactions in addition to the electrostatic Hamilto-
nian. The fits to the I7---CO4 and I--- COy curves are shown in Figure 3.10
and the LJ parameters for both I and Cl are given in Table 3.8. Since no ZEKE
studies of Cl™ - - - CO, have been performed, the only experimental information
available about the interaction potentials are approximate values of the anion
well depth, D, = 350 meV, and the equilibrium geometry, Rc.c = 3.0 A [47].
The resulting potential curves for both the anion and neutral interactions are
shown in Fig. 3.11. Note that induction damping is not applied to the ICl~
interaction potentials. The difference between the I~ ---COy interaction po-

tential at R, with and without damping is about 1% of the binding energy.
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Figure 3.9: Interaction of ?P halogen atom with CO,. (a) shows that the
state with a hole in the II orbital is lower in energy because of the resulting
positive quadrupole moment, which interacts favorably with the quadrupole
on CO,. In the ¥ orientation, the hole interaction with the CO, quadrupole
is slightly repulsive. (b) shows the resulting state ordering when spin-orbit
coupling is included. The ordering of the lower two states is reversed for the
linear geometry.



99

100 -

| (P,,) + CO,

-100 ~

— — T-shaped (model)
—— T-shaped (experiment)
rrrrrrrrr linear (model)

-200

100

-100

-200 -

potential energy (meV)

100 -

-100

-200 r

R._.(A)

Figure 3.10: Potential curves for I(?P) interacting with CO, in the linear and
T-shaped geometries. The dashed and solid lines show a comparison between
the model and experimental fits. The interaction for the linear geometry of
the anion is strongly repulsive, but there are significant attractive wells for the
linear configurations of the neutral states.
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Figure 3.11: Potential curves for C1(?P) interacting with CO, in the linear and
T-shaped geometries. No experimental information is available for the neutral
interactions, so these curves represent a “best guess.”
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3.4 Conclusions

This chapter has described some of the techniques that can be used to
parameterize the effective solute-solvent Hamiltonian of Chapter 2. Ab initio
calculations augmented by experimental data are used to determine the solute
electronic states. The solvent model is given by a combination of the known
electrostatic properties of the solvent molecules and simple empirical poten-
tials fit to experimental data. The solute-solvent interactions are determined
by the carefully parameterized electrostatic interactions between the solute
multipole operators and the solvent electrostatic properties, and by empirical
short-range potentials, which are fit to reproduce experimentally determined
pair potentials. The method of parameterization is similar to the semiempir-
ical diatomics-in-molecules and diatomics-in-ionic-systems methods discussed
briefly in Chapter 2, but with an improved description of the solute wave func-
tions.

The description of how the model parameters are determined has also
revealed several properties of the system that strongly influence the dynamics
studied in later chapters. Most important is the character of the solute wave
function and the changes that occur as the molecule dissociates, creating state-
dependent charge flow. The interaction of the solute fragments with the solvent
also affects mechanisms for electronic relaxation. In the absence of strong
coupling between states of different €2 values, one might not expect the A state
(first excited state) to play an important role in the dynamics, but, as discussed
in future chapters, it clearly does.

Finally, here are some thoughts on future improvements to the model

and methods used to determine model parameters. Clearly, the most direct way
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to improve the potentials is to obtain more data for the solute-solvent interac-
tions. Neumark’s group has recently measured electron affinities of I; Ar, and
I, (CO3),, which give the first direct data about the interaction of the solute
anion with individual solvent molecules. A complete photoelectron spectrum of
I; Ar or I; (COy) is also a possibility. In the future, resonance Raman coupled
with photoelectron spectroscopy studies may also help to better character-
ize the excited states of I, and other dihalide anions. On the computational
side, ab initio calculations of the solute with relativistic contributions (includ-
ing spin-orbit coupling) could be used to test and improve the current solute
model. Ab initio methods also hold promise for improving the solute-solvent
potentials, particularly for geometries and solvent molecules that have not been
studied experimentally. Anisotropic Lennard-Jones parameters [48, 49] or even
the more ambitious Gaussian multipoles [50-52] might be used to give a better
description of the molecular shapes determined by the short-range interactions.
Inclusion of state-dependence in the short-range potentials is also key to im-
proving the models of some non-halogen solutes, such as Mgy, where there
are unoccupied valence orbitals. While there are clearly many directions for
future improvement, the current model, as described in this and the preceding
chapter, already can provide many insights into the systems that have been

studied.
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Chapter 4

Structure and Dynamics Methods

Chapters 2 and 3 described an effective Hamiltonian for the electronic
states of a solute embedded in a molecular cluster or solvent. The eigenstates
of this Hamiltonian define potential surfaces for each electronic state of the
solute as a function of the nuclear positions; these are the Born-Oppenheimer
or adiabatic surfaces that govern the nuclear motion when the electrons are
assumed to move infinitely quickly. We want to model the dynamics that occur
when the solute in its ground electronic state absorbs a photon and is excited to
a potential surface on which the solute nuclei are repelled—photodissociation.
Because there are many nuclear degrees of freedom in the cluster, the nuclear
dynamics on each potential surface must be treated using classical mechanics,
i.e. solving Newton’s equations of motion for the nuclei under the influence of
the Born-Oppenheimer potential surface.

The initial configurations of the cluster prior to photoexcitation are
determined by following the molecular dynamics (MD)—the motions of the
nuclei—on the ground state potential surface. Trajectories are computed on
the ground state surface starting from an arbitrary configuration at a fixed total
energy, and are followed until the distribution of energy throughout the cluster

reaches equilibrium. After equilibration, cluster configurations are periodically



108

sampled to construct an ensemble of starting points for photodissociation tra-
jectories. The ensemble is meant to sample the range of initial configurations
sampled by an experiment performed under specific conditions, most often at
fixed temperature. In characterizing the behavior of clusters at equilibrium, it
is also useful to identify local minima of the potential surface [1]. Structural
features of these minima often influence the dynamics both before and after
photoexcitation.

Following photoexcitation, the solute nuclei fly apart on the repul-
sive excited state surface. As the solute nears dissociation, its electronic states
bunch together, leading to a breakdown of the Born-Oppenheimer picture. The
electrons of the solute no longer respond instantly to the motions of the nu-
clei, so that the true electronic wave function of the solute becomes a mixture
of the adiabatic states. An exact treatment of these nonadiabatic dynamics
would require a quantum-mechanical description of both the electrons and the
nuclei, but this is not feasible for systems containing more than a few atoms.
Fortunately, there are several approximate methods for treating nonadiabatic
dynamics that allow us to retain a classical description of the nuclei. The sim-
ulations reported here were performed using a surface-hopping (SH) approach
to describe the nonadiabatic dynamics. The nuclei evolve on a single adiabatic
state at a time, but this state can change when nonadiabatic coupling with
other states occurs. Surface hopping is determined stochastically according to
an algorithm in which the probability of occupying each adiabatic state is given
by the square of its amplitude in the total nonadiabatic electronic wave func-
tion. Because this is an all-or-nothing approach—the trajectory must always
be on one surface or another—a large number of trajectories must be computed

to determine the correct branching probabilities into each of the coupled states.
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This chapter details the methods used to compute optimized geome-
tries, single-state MD trajectories, and nonadiabatic dynamics. Like ancient
Gaul, it is divided into 3 parts [2]. The first part presents the coordinates
defining the nuclear degrees of freedom and shows how optimized geometries
and MD trajectories are computed in this coordinate system. The second part
describes the surface-hopping method used to compute nonadiabatic dynamics,
making a comparison with other methods and addressing possible pitfalls. The
final part details calculation of the forces and nonadiabatic couplings required
to compute trajectories and surface-hopping. The methods presented here ap-
ply generally to all of the simulations presented in this work. Specific details
about the length of trajectories used in equilibration and photodissociation and

the procedures for finding minima are presented in the application chapters.

4.1 Adiabatic Dynamics

It is common practice in MD simulations to constrain the intramolec-
ular degrees of freedom when they are not considered vital to the properties
of interest. The treatment of molecules as rigid objects is usually justified be-
cause the frequencies of the intramolecular vibrations are generally much higher
than the frequencies for intermolecular motions. The forces that act between
molecules are thus averaged over these internal vibrations and are usually well
approximated by fixing each molecule at its equilibrium geometry. Constrain-
ing molecules to be rigid has the computational advantage that a much larger
time step can be used in integrating the equations of motion since the rapid
vibrational oscillations have been removed. On the other hand, there are many

cases when it is not desirable to constrain the internal degrees of freedom. It
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is obvious that in modeling photodissociation the solute bond must be allowed
to break. It is also possible that, when a large amount of energy is put into
a cluster on a short time scale through photoexcitation, some of the energy
will go to excite internal vibrations of the solvent molecules. Almost all of the
simulations performed in this work have used a flexible solute and rigid solvent
molecules, and the good agreement of the results with experiment show that
this is a reasonable approximation in many cases. In the future, however, it
will be important to study the effects of relaxing the internal molecular con-
straints to determine what role intramolecular vibrations play in dissipating
both excess vibrational and electronic energy due to photoexcitation.

Two procedures are in common use for MD of rigid molecules. In
the first, each molecule is specified by its center of mass position and its ori-
entation, as defined by three Euler angles [3]. Because the Euler equations of
motion contain a singularity that makes numerical integration difficult, these
angles are re-expressed as a set of quaternions [3, 4], which gives rise to a
singularity-free set of equations [3, 5]. In the second method, referred to here
as the method of constraints, the molecular geometry is specified by the Carte-
sian coordinates of a core group of atoms [6, 7]. Each molecule is held rigid
by the application of constraints that hold fixed various bond distances and
dihedral angles [3, 7]. The method of constraints is used here because it can
treat rigid, flexible, and semi-flexible molecules all on the same footing, de-
pending on which constraints are applied. The number of core atoms depends
on the molecular geometry: two core atoms specify a linear molecule, three
a planar molecule, and a maximum of four are needed for an arbitrary non-
planar molecule. Constraining all of the core atom distances fixes the molecule

as rigid, but individual constraints may be eliminated and replaced by internal
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potentials to give the molecule flexibility. The advantage of this approach is
that introducing flexibility does not require fundamentally altering the equa-
tions of motion, and it is easy to create a computer implementation in which
the molecular model can be changed simply through input parameters. Section
4.1.1 describes in more detail the molecular coordinate system in the method
of constraints, while Sections 4.1.2 and 4.1.3 present the equations that govern

geometry optimization and MD integration in this coordinate system.

4.1.1 Molecular Coordinate System

The description of coordinates used here is based on the method of
constraints developed by Ciccotti, Ferrario, and Ryckaert [6, 7], which built
on earlier work involving constraint dynamics [8, 9]. They used the Carte-
sian coordinates of a minimal core of atoms to define rigid subunits within a
molecule, and showed that an arbitrary molecule with some degrees of freedom
held fixed and others allowed to vary could be described using combinations
of rigid subunits and holonomic constraints [4]. They also developed efficient
methods for solving the equations of motion in this coordinate system subject
to the constraints, showing that for a rigid molecule the method of constraints
is about as efficient as using the rigid body equations of motion [6]. The
most expensive part of most molecular models is the evaluation of energies and
forces (particularly when there are non-additive contributions, as there are in
our model), and overhead associated with integrating the additional equations
of motion or applying constraints is usually small. What is most important is
picking an integration method that yields acceptable accuracy for a maximal
step size, so that the number of force evaluations can be limited. The Verlet

algorithm [10] and its descendant the velocity Verlet algorithm [11], which we
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have used, provide an optimal balance between efficiency and accuracy [3].
The method of constraints specifies three site categories: primary
atom, secondary atom, and force center. The primary atoms are the atoms
used to define each subunit, and their coordinates are used to integrate the
equations of motion. All forces and torques in the system must be converted
to forces on the primary atoms. Secondary atoms and force centers are defined
with respect to the primary atoms in the subunit to which they belong by a

simple linear relation,

Tip
Iy, = aniRia (41)
i=1

where r, gives the position of the site o, the R,; are the positions of the primary
atoms in the subunit, and n, is the number of primary atoms in the subunit.
As an example, illustrated in Fig. 4.1, we can define linear CO4 by taking the
O atoms as primary atoms and defining the position of the carbon atom as the

midpoint of the O—O separation,
1 1
rc = §R01 + EROT (42)

Using the chain rule, it is easily seen that the force on the secondary carbon
site, fo creates an additional force of %fc on each of the primary oxygen atoms.

The forces on secondary sites are transferred to the primary sites by

F! =) caifa- (4.3)

In the equations of motion for the system, the masses of the secondary atoms

also contribute inertial forces, which are discussed in Sec. 4.1.3. This inertial
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Figure 4.1: Rigid CO5 model using method of constraints.

force is the only factor that distinguishes the secondary atoms from the force
centers.

The complete model for rigid CO5 has the two primary oxygen atoms,
a secondary carbon atom at the bond midpoint, and a bond constraint fixing

the O-O distance at ro_o,
000 =|Ro, —Ro,[° —15_5 = 0. (4.4)

Five additional force centers for the point charges and one additional force
center for the polarizability along with the pairwise Lennard-Jones interactions
associated with the atomic sites complete the potential model described in
Chapter 3. Because the polarizability of CO, is anisotropic, the polarizable site
exerts a torque on the molecule, which is resolved into forces on the primary
atoms using the derivatives of the molecular axes with respect to the primary
atom positions. Methods for resolving these torques and for determining the
forces due to multipole sites of arbitrary order are discussed in Sec. 4.3.4.
The required derivatives are straightforward for a linear molecule, but become
cumbersome even for nonlinear triatomics. For rigid non-planar molecules with
multipoles of dipole and higher order, it is probably simpler to use the torques
in the rigid body equations of motion rather than the method of constraints.

The advantage of the constraint method comes when one or more internal
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degrees of freedom is flexible. Flexible CO,, for example, can be modeled
using three primary atoms with the two C-O bonds held fixed, leaving only
the lowest frequency mode, the bend, active. The charges remain fixed at
constant points along the C-O bonds as the molecule bends, creating a small
dipole for slightly bent configurations. Based on the work of Arnold et al. [12],
this dipole may be an important component of the halogen ion—CQO, interaction
for the T-shaped configuration, although we have not yet tested this using our
model.

The model for the diatomic solute consists of two primary atoms and
4 force centers for the multipoles located on the nuclei and at equidistant
points along the bond. The internal potential of the molecule is built into
the effective Hamiltonian described in Chapters 2 and 3. As in the model of
COg, the primary atomic sites are also associated with pairwise Lennard-Jones
potentials that describe the short-range interactions with the solvent atoms.
The model for argon consists simply of a single primary atom with associated

Lennard-Jones potentials and a force center for the polarizability.

4.1.2 Geometry Optimization

Local minima of potential energy surfaces in clusters often reveal im-
portant structural characteristics that affect both static and dynamic prop-
erties [1]. We find minimum energy structures using standard optimization
techniques augmented by the method of constraints. The optimization meth-
ods described here are based on the projection operator method described
by Lu, Zhao, and Truhlar [13]. These workers combined projection opera-
tors with quasi-Newton optimization algorithms [14], while we have used both

quasi-Newton and conjugate gradient techniques [14] to find minima.
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Two features must be added to minimization algorithms to ensure
that the constraints are obeyed and that the efficiency of the method is main-
tained. First, the constraints must be projected out of the gradient or force
vector, so that infinitesimal displacements along the constrained gradient do
not violate the constraints. All of the molecular constraints are holonomic and

can be written in the form
UP(R) = 0’ (45)

where R is a vector containing the positions of all of the primary atoms in the

molecule. The constraint directions, #,, are given by
ty = Vroy(R)/ |[Vrop(R)|. (4.6)
The projection operator is then defined by
PR) =D {,®1, (4.7)
p

where @ denotes an outer product, (a ® b);; = a;b;. The constrained force

vector can then be written
F°=(1-P(R))-F, (4.8)

where F is the unconstrained force.
The second required component is a method for applying the con-
straints to a configuration where the constraints are violated by a small amount.

These configurations arise even for displacements made using F¢ because the
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constraints are in general not linear with respect to the displacements. It is
therefore necessary to adjust the molecular configuration following a move so
that the constraints are obeyed to within a narrow tolerance. This can be done

by making corrections along the direction of the constraint gradients,

R°=R-) )\Vro,(R), (4.9)

p

where ), is a undetermined constant determined by solving the equation
0,(R°) =0 (4.10)

for \,. Cicotti and Ryckaert [7] have reviewed the methods available for solving
the constraint equations, and we focus here on an iterative solution based on
the general approach of the SHAKE algorithm used to apply constraints during
MD integration [3, 8 9]. R¢ is determined by iterative application of the

constraints. For each constraint, R is adjusted iteratively using
RY =RN! — )\évVRap(RN_l), (4.11)

where R? = R. )\i,v is determined by Taylor expanding the condition that the

constraint be obeyed at R”,

op(RY) = 0, RN+ A Vro,(R" )] =0, (4.12)
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about RV~ ! keeping only first order times in )\év . This gives

N _ Up(RN_l)
" |Vrop(RN-[

(4.13)

The iteration in N is continued until the constraint is obeyed to within a
specified tolerance, usually 106108, which takes typically only a few steps for
simple bond constraints. The loop over constraints is continued until all of the
constraints meet the specified tolerance. The procedure requires relatively little
computation because the constraints usually apply to only a single molecule at
a time, although we have found the method applicable when there are global
constraints applying to all molecules simultaneously. In this case the amount
of computation scales linearly with the total number of primary atoms in the
system; in contrast, the force evaluation scales quadratically with the total
number of force centers (primary and secondary).

Two different standard optimization algorithms, conjugate gradient
and quasi-Newton, have been adapted to the method of constraints. The con-
jugate gradient method works by performing a series of line minimizations
along approximately conjugate directions determined by a simple update pro-
cedure [14]. The conjugacy of directions along which to minimize reduces the
interference between successive minimizations and leads to rapid convergence
in quadratic regions of the potential [14]. In the modified method we use the
constrained gradients, obtained from the projection shown in Eq. 4.8 above, in
the update formula. The conjugate gradient obtained from the update proce-
dure is also projected, and each trial configuration along the line minimization
is also adjusted to obey the constraints as described in Eqgs. 4.11 and 4.13.

Schematically, the procedure at step N is given by:
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(1) Compute the constrained gradient

gV’ =(1-PR")) - VrRERY). (4.14)

(2) Compute the new conjugate direction for line minimization

h" =gV + 4y nV 1, (4.15)

where

N (gN . gN—l) gV

v = prET I (4.16)

and project the constraints from this direction to obtain the direction used in

line minimization
h)Y = (1-PR"Y))-n" (4.17)

N.B. h" rather than hY is used in the update formula, Eq. 4.15.

(3) Minimize F(R *!(«)) with respect to o, where

R¥(a) = R" + ah? — Zx\pop(RN + ahl), (4.18)
p
and R¥*1(a) is determined by the method of applying constraints described
above.
This cycle is repeated until |gN | falls below a specified tolerance,
generally between 1076-1078. We have used this constrained CG procedure

extensively to find minimum energy structures of various clusters involving
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CO3, and have found it to be efficient. It is faster than simulated annealing
techniques using Monte Carlo trajectories previously used by our group [15, 16]
and molecular dynamics quenching [17, 18], which we have also tested. A
characteristic feature of the CG technique is that gradients of the function are
evaluated only at step (1), while most of the function evaluations take place
in step (3). (Gradients can be used in the line minimization in step (3), but
we have not done so.) This make CG an attractive choice if the gradients are
expensive to compute, as, for example, would be the case if the gradients had
to be computed by finite differences.

Evaluation of the forces analytically using the model Hamiltonian,
however, is only about three times more expensive than evaluation of the energy
alone. Therefore, a method that makes use of the gradient in computing each
new trial step is likely to outperform CG for these clusters. We have found that
the quasi-Newton [14], or variable metric methods, are easy to code and give
substantially better performance than the CG method. In these methods an
approximate Hessian or inverse Hessian is computed iteratively using gradients
at each time step. The approximate Hessian is used at each step to determine
the size and direction of the next step. Different update procedures are possible,
but for simplicity we use the popular BFGS formula [14]. Here is an outline of
the algorithm at step V:

(1) Compute the constrained gradient

gV’ = (1-PRY))-VrRERY). (4.19)
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(2) Update the approximate inverse Hessian according to

dR®dR (HV'-dg)® (HV'-dg)
dR - dg dg-HVN-1.dg
+ [dg-HY ' -dg|lu®u, (4.20)

HY = H" '+

where

dR = RY-RV!

dR HN-!.dg
- - . 4.21
Y7 dR-dg dg-HV'.dg (421)

The choice H® = 1 results in a positive definite update [14] and is used in
this implementation. When H° = 1, the initial step follows the direction of
steepest descents. At subsequent steps, if the gradient has increased along the
direction of the previous step, i.e. dg - dR > 0, the algorithm resets HY to 1,
forcing a steepest descents step to get back on track.

(3) Step the configuration according to
RNt =RN —H" . g" (4.22)

to obtain the new unconstrained geometry. In practice it is a good idea to set
a limit on the maximum size of the step allowed to prevent the configuration
from changing too rapidly.

(4) Apply the constraints to the new geometry,

RV =Ry Z Apop(Ry ), (4.23)

p
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which is determined by applying the constraints iteratively as above.

This cycle is repeated until |gN | falls below a specified tolerance,
generally between 1076 and 1078. This quasi-Newton method is more efficient
than CG because the gradient information in incorporated into every step.
While both methods in principle achieve linear convergence in the limit that
the potential is given by a quadratic form, cluster potential surfaces tend to
be highly anharmonic, and the quasi-Newton methods seem to benefit from a

more efficient local approach.

4.1.3 Molecular Dynamics

In this section we derive the equations of motion for the primary atoms
of each molecule subject to the inertial forces from the secondary atoms and the
internal constraints. We then show how these equations are solved numerically
using Andersen’s velocity Verlet algorithm [11]. The resulting equations are
equivalent to those originally derived by Cicotti et al. [6]. The aim here is to
provide a more transparent derivation and a set of equations that is closer to
the actual numerical implementation.

Let us consider a molecule with n, primary atoms, n, secondary
atoms, and ny force centers. The positions of the secondary atoms, r}, and

the force centers, r!, are given by

o= > R (4.24)
rl = > dRi. (4.25)

The Lagrangian can now be used to determine the molecular equations of
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motion. The kinetic energy is
1 p . . 1 Ns
T=3 > miR; R+ 5 > miEs -1, (4.26)
i a

where m? and m? are the masses of the primary and secondary atoms respec-

tively. Substituting the time derivative of Eq. 4.24 into this expression gives

T = % zi:: (%mf + 2 cgimzcgj) Rz - RZ
1 .
5 ) MR- R;, (4.27)

ij

where the matrix M is the metric tensor defined in the theory of normal modes
[4]. The potential energy, V, is known as a function of the coordinates R;, r?,,

and rf

!, so that the forces with respect to the primary atom coordinates are

given by

v 9V isav_”ffav

- _ _ ) S 4.28
dR; OR; - Cai ors, ~ Coi orl’ ( )

where the partial derivatives are calculated from the model Hamiltonian using
the methods described in Sec. 4.3. Plugging 7" — V into Lagrange’s equations
of motion and using the method of undetermined multipliers to obtain the

constraint forces [4], we obtain the coupled equations
Z MzJRz = Fz - Z )\pVRiOp(R): (429)
ij p

where the constraints 0,(R) are defined as above in Sec. 4.1.2. Solving this
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equation for R; gives

Rz = Z(M_l)iij - Z /\p Z(M_l)ijVRjO'p(R), (430)
J p J

which, by making the associations
Fi = > (M 1);,F, (4.31)

J
R = ) (M ');;Vr,05(R), (4.32)

J

takes the simple form

Ri=F—-> MR (4.33)

p

Note that the matrix M only needs to be inverted once during an entire inte-
gration because its elements do not depend on the positions of the atoms.

Many different methods may be used to propagate the molecular equa-
tions of motion (Eq. 4.33) forward in time. Andersen’s velocity version of the
Verlet algorithm [11] has been chosen because it maintains acceptable accu-
racy for relatively large step sizes. Its major advantage over the original Verlet
algorithm is that only information from the current time step is required to
propagate forward, so the step size may be changed at any point without
restarting the integration. This is useful when integrating the nonadiabatic
equations of motion simultaneously, as discussed below.

The equations of motion for the positions and velocities are propa-
gated in two separate steps, with the constraints applied at the end of each

step using an iterative procedure similar to the one described in Sec. 4.1.2. In
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the first step, the new positions are calculated using

. h_ h
Ri(t+h) = Ri(t) + hRi + S Fi — o ij MRE(1) (4.34)

The constraints are applied iteratively. It is convenient to define a separate

quantity q such that

: h
@ = Ri(t)+§-7:i(t)

h
a = qfv’l—EAéVRé’(t) (4.35)
R)Y = Ri(t)+hq) (4.36)

At each iteration a single constraint is chosen and )\I],V is determined from the
constraint, o,(R") = 0. Plugging Eqs. 4.35 and 4.36 into the constraint and

expanding to first order in powers of )\I],V gives

20,(RN1)

A = — : (4.37)
B2y RE() - Vr,op(RY)
i
Each iteration requires only evaluation of the constraint p and its gradient
with respect to the other primary atom positions. The iteration is continued
until all of the constraints are satisfied to within a specific tolerance, generally
1076-10-8.

Once the constrained positions R;(¢ + k) have been determined, the
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forces at the new time are calculated and used to propagate the velocities via

h v
3 Fit) — zp:ApRI;(t) + Fi(t+h) — Xp: MRE(t + h)
h
_ N v
= q; + 5 Fi(t+h) — Z MRE(t+ h) (4.38)

p

The velocities must be constrained so that they obey the time derivatives of
the constraints, ¢, (R(t+ ), R(t + h)) This is accomplished by iteration

over the constraints

: h
R} = q' +F(t+h) (4.39)
. U L

RY = RV'1- 2 AYRE(t). (4.40)

Requiring the time derivatives of the constraints to obey
&y (R(t +h), Rt + h)) =0 (4.41)

and expanding this to first order in ”)\;,V gives

2%, (R(t +h), RVI(t+ h,))

AN = (4.42)

Np

By RE(t+h) - Vr,6, (R(t +R), RVt + h))

The iteration is continued until all of the constraint derivatives fall below the
specified tolerance. While this two-step procedure is somewhat more involved
than the single-step SHAKE procedure used to apply constraints with the Verlet

algorithm, the additional computational expense is negligible. Andersen has
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shown that the two-step constraint method, which he calls RATTLE, combined
with the velocity Verlet algorithm has the same global error as the Verlet
algorithm [11]. The energy conservation is O(h?), and a simple diagnostic is
to check that the standard deviation of the energy over a trajectory scales

quadratically with the step size.

4.2 Nonadiabatic Dynamics

Photodissociation in molecular clusters involves dynamics on multi-
ple, highly-coupled potential energy surfaces. A complete description of such a
process would require quantum-mechanical treatment of both the nuclear and
electronic degrees of freedom in the problem. This is clearly not feasible for
systems with more than a few atoms because of the intensive computational
demands of quantum methods, which scale exponentially with the number of
degrees of freedom. Mixed quantum-classical (MQC) methods, in which the
majority of degrees of freedom are described by classical mechanics, scale lin-
early with number of degrees of freedom and offer an approximate solution
to the problem. These methods require that a clear separation can be made
between quantum and classical degrees of freedom. In the case of photodis-
sociation in molecular clusters, the separation between quantum and classical
degrees of freedom is just the Born-Oppenheimer separation between electronic
and nuclear motion: the electronic states of the solute are treated quantum me-
chanically, while all of the nuclei are treated classically. In what follows, R will
denote the classical coordinates, which are the nuclear positions, and r will rep-
resent the quantum mechanical coordinates, which are the electron positions.

The section is divided into three parts. Section 4.2.1 describes various methods
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available for treating MQC dynamics, and explains why surface-hopping has
been chosen to model photodissociation in clusters. Section 4.2.2 addresses the
fundamental problem of treating quantum decoherence that arises in all sur-
face hopping methods and discusses several possible solutions. Finally, Section
4.2.3 presents the details of the surface-hopping algorithm used in the present

work.

4.2.1 Mixed Quantum-Classical Methods

Central to all MQC methods is the concept of the classical path,
which is the path through configuration space followed by the classical degrees
of freedom under the influence of forces determined from both the classical
and quantum systems. The quantum-mechanical wave function for the entire
system samples a range of classical configurations, so that in order to mimic
quantum mechanics many classical paths must be computed starting from a
distribution of initial conditions, with the observables determined from en-
semble averages over all the paths. The various methods of computing MQC
dynamics differ primarily in the way the forces acting on the classical subsys-
tem are determined and in how the paths are averaged in order to compute
observables. The use of classical path ideas dates back to Mott [19], who
studied the electronic excitation of atoms during collisions using a classical
description of the nuclei and wave functions to describe the electrons. The
time evolution of the quantum wave function in all classical path treatments is
determined by integrating the time-dependent Schrodinger equation along the
classical path. The wave function for the quantum subsystem is expanded in

some basis of orthonormal functions that may depend parametrically upon the
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classical coordinates,

U(r,R,t) =Y ci(t)i(r;R). (4.43)

i
The Hamiltonian for the system can be written as an operator on the quantum

degrees of freedom

A A A

H=Hy(r;R)+T(R), (4.44)

where Hy(r;R) is the Hamiltonian for fixed nuclei and T'(R) is the nuclear
kinetic energy operator. Putting this wave function and Hamiltonian into the
time-dependent Schrodinger equation to determine the time evolution of the

coefficients ¢;(t) gives
ihéi(t) = cj (Hy — ih{3|0/0t|1;)) - (4.45)
i

The probability of occupying a given quantum state ¢ at time ¢ is given by
le;(t)|?. Although any representation may be chosen for the electronic basis
functions, it is common to choose the eigenstates of f]o, otherwise known as the
adiabatic states, because this is the only representation that can be uniquely
defined for a general system. In the adiabatic representation, the equation for

the quantum amplitudes reduces to

J
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where F; is the energy of adiabatic state ¢, R(t) contains the nuclear velocities,

and d;; is the nonadiabatic coupling vector

dij = (il Vr|¥), (4.47)

which enters Eq. 4.45 by application of the chain rule
(1hi|0/ 0t ;) = R(t) - dyy. (4.48)

The matrix elements of the nuclear kinetic energy operator T(R) probe second
derivatives of the electronic wave function with respect to the nuclear coordi-
nates, and are thus small compared to the d;; and usually neglected [20-22].
Methods for evaluating the nonadiabatic couplings given by the d;; are dis-
cussed in Sec. 4.3.

The classical path equations of motion, Eq. 4.45 or 4.46, determine
how the quantum degrees of freedom respond to the evolution of the classical
degrees of freedom. Some method is also needed to determine the forces that
act on the classical subsystem as the quantum wave function evolves. Perhaps

the simplest force to use is the self-consistent or mean-field force,
Fur = — (0(0) [ VrHo(R) (1)) (4.49)

which is simply the force averaged over the quantum degrees of freedom. Meth-
ods that use this force to determine the classical path are known as self-
consistent classical path (SCCP) methods [23]. Trajectories computed using
the mean-field force are guaranteed to conserve energy. While SCCP methods

have been successfully applied to a wide range of problems [23], they suffer
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from several well-known drawbacks [23-26]. Because the SCCP follows an av-
erage potential, it cannot reproduce the variety of different paths that arise
when the potential surfaces are very different. SCCP methods are thus par-
ticularly inappropriate for modeling photodissociation, where dissociation and
recombination lead to very different dynamics.

In surface-hopping methods, the primary alternative to SCCP meth-
ods, classical trajectories evolve under the forces determined from a single

quantum state k,

Fsu = — (| VAo (R)|ih ) - (4.50)

At various points along the trajectory, generally coinciding with regions of
strong interstate coupling, hops may take place to different states to reflect
the cumulative occupation probabilities determined by the |c;(¢)[>. Unlike the
mean-field force, the force on a surface-hopping trajectory responds to changes
in the total quantum wave function only at the points where hops can occur.
Self-consistency between the quantum wave function and the classical degrees
of freedom is thus not realized on an individual trajectory, but is realized for the
ensemble of trajectories, which maintains the correct population of quantum
states. The main difference between a SH and a SCCP trajectory is thus the
length of time a quantum state that is a mixture of the basis states is used to
determine the forces; or, in other words, the time scale over which a transition
from one basis state to another takes place. In SCCP methods this time scale
is infinite: the mixed state is never resolved, which leads to problems when
the potentials for the various states differ significantly. In SH methods, the

transition from one potential to another is instantaneous, with the difference in
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energy made up by some adjustment of the classical velocities. Thus, different
SH trajectories may follow divergent trajectories when the states involved have
substantially different potentials.

A simple illustration of surface hopping is shown in Fig. 4.2. In this
model problem, originally studied by Tully [24], a wavepacket entering on the
left in the lower state passes through a region of strong nonadiabatic coupling.
At energies below the barrier on the upper state, the part of the wavepacket
making the transition to the upper state is reflected back, while the wavepacket
on the lower state is accelerated toward the right. The same behavior is ex-
hibited by SH trajectories. After passage through the coupling region, some
of the trajectories will be promoted to the upper state and be reflected back,
while other will be accelerated on the lower state. In fact, SH methods do an
excellent job of reproducing the quantum transmission and reflection proba-
bilities for this problem [24]. In contrast, the SCCP trajectories all follow the
path illustrated by the dashed line and are accelerated on the lower surface.
This example shows that when a transition is made between two potential sur-
faces of very different shape, the time scale over which the classical degrees of
freedom experience a mixed-state potential is very short. It also illustrates the
importance of the choice of basis states in SH methods: if the diabatic states,
shown by the dotted lines, were used the SH trajectories would be meaningless.
It has been shown [23] that SH methods generally work best when adiabatic
potentials are used.

Tully has introduced a general and easily applied SH method called
molecular dynamics with quantum transitions (MDQT) [24, 27]. Coker and
coworkers have also discussed this method extensively [22, 28] and made nu-

merous applications to multidimensional systems of physical and experimen-
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Figure 4.2: Wavepacket dynamics on two coupled potential surfaces. A
wavepacket entering on the left in the lower state with energy below the upper
state barrier is split into two pieces in the coupling region. The portion that
remains on the lower state is accelerated toward the right, while the portion
that goes to the upper state is reflected. The reflected wavepacket splits again
on its reentry into the coupling region. The dotted lines indicate the diabatic
potentials, and the long-dashed line illustrates the mean-field potential.
tal interest [29-37]. Another prescription for carrying out extended surface-
hopping dynamics has been given by Kuntz [38], but it has not been widely
used. In MDQT, the quantum amplitudes (Eq. 4.46) are integrated through-
out the course of a trajectory. At every time step a decision is made whether
to switch to a new state using a “fewest switches” algorithm designed to min-
imize the total number of hops [22, 24]. This algorithm correctly reproduces
the probabilities |c;(¢)|> of occupying each quantum state at any time along a
given trajectory. The two major advantages of MDQT over previous SH meth-
ods [20, 21] are that regions of strong coupling do not have to be identified in
advance and regions of extended coupling may be treated. Both of these prop-
erties make MDQT easy to implement in any system, regardless of size, as long
as the necessary potential surfaces and couplings can be computed at arbitrary

configurations. Because of its simplicity and success, MDQT has become the

standard method for computing nonadiabatic dynamics in systems with more
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than a few degrees of freedom.

Prehzdo and Rossky [26] have recently incorporated a localized mean
force potential in a surface-hopping algorithm to provide smoother hopping
among potential curves in regions where the coupling is strong, and have ob-
tained some improvement over MDQT for some one dimensional model prob-
lems. Their method represents only a small change from the MDQT procedure,
however, because the mean field potential is only used in regions where the cou-
pling is strong and the potential curves differ by a small amount, and it remains
to be seen whether this will have an effect on results for larger systems.

One purported advantage of MDQT over earlier SH approaches is the
ability to capture certain quantum interference effects. The fact that the quan-
tum amplitudes are not reset at each passage into a new coupling region means
that the quantum amplitudes may interfere with each other in subsequent cou-
pling regions, leading to observable interference effects, such as Stueckelberg
oscillations [24]. While the MDQT method assumes instantaneous resolution
of the mixed state for the purposes of determining the forces acting on a single
trajectory, it assumes an infinite time scale for the propagation of the mixed
state quantum wave function. Another way of saying this is that the quantum
phase coherence is maintained for all time. This inconsistency is present in
all SH methods because the time scale for mixed state propagation must be
of at least finite duration for transitions to take place. It would perhaps be
more consistent, however, to set the quantum state to be the occupied state,
i.e. |¥(t)) = |¢)x), following a successful hop, as at least one group has sug-
gested [39, 40]. Then resolution of the mixed state wave function for calculating
the forces and for propagating the quantum amplitudes would coincide. This

is only a partial solution to the problem, however, because the mixed state is



134

still propagated indefinitely if no hops occur.

To illustrate possible problems with quantum phase coherence in the
MDQT method, we can revisit the model problem illustrated in Fig. 4.2. The
wavepacket reflected on the upper potential passes through the coupling region
for a second time, creating reflected flux on the lower state as well as the upper
state. Because the wavepacket that remained on the lower state during the
first passage through the coupling region continued traveling toward the right,
there is no interference on the second passage through the coupling region,
and the reflection probability in each state is a smooth function of the incident
energy. The reflection probabilities calculated using MDQT, however, show
rapid oscillations [24]. This spurious interference is caused by propagating the
mixed quantum state |¥(¢)) through both coupling regions. This mixed state
should be resolved into a single adiabatic state in situations such as this, where
the potential surfaces of the two states differ substantially. In this example, a
modified MDQT where the mixed state is resolved following a hop gives the
correct results. Other methods for handling the effects of the finite time scale
for the resolution of the mixed quantum state, which can be referred to as
quantum decoherence, are discussed in the following section.

We have seen that for determination of the forces acting on the clas-
sical degrees of freedom, mean-field methods assume an infinite time scale
for transitions among different basis states, while SH methods assume an in-
finitesimal transition time. Pechukas carried out a semiclassical analysis of this
problem in a path integral representation [41]. By making a stationary phase
approximation he identified the most important path in the classical limit and
determined the effective force on the classical degrees of freedom along this

path. The effective force for a path starting in state j at time #; and ending in
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state k at time %, is given by

(Bu(t) |VrHo(R)| ,(0))
(Te0)] w,00)

F?k(t) = —Re , (4.51)
where W;(t) is the total wave function at time ¢ determined by integrating
Eq. 4.46 forward from ¢, with W;(t,) = 1;, and W,(t) is the total wave function
at time ¢ determined by integrating Eq. 4.46 backward from t, with U, (to) = .
This formula gives a smooth evolution of the force over the transition, and
thus a trajectory computed using it will conserve energy. There are two main
difficulties, however, involving use of the Pechukas force in MQC methods.
The first is that the force is nonlocal in time, so that evaluating it requires an
iterative procedure, which may be expensive to carry out and is not guaranteed
to converge. The second problem lies in choosing the time interval over which
the transition takes place. There is no general prescription for choosing this
interval, but the results may depend sensitively upon the choice [42-44].

One important application of the Pechukas force is in deriving a
scheme for adjusting the classical velocities along a SH trajectory following
a hop. It has been shown [20, 21, 25, 28] that for an infinitesimal time inter-
val, the Pechukas formula gives rise to a transition force parallel to the real
part of the nonadiabatic coupling vector, d;;. Thus the MDQT trajectories,
in which velocities are scaled in the direction of the nonadiabatic coupling vec-
tor following a hop, obey the Pechukas force in the limit of an instantaneous
transition.

A more rigorous implementation of the Pechukas formula has been

used in the stationary phase surface-hopping (SPSH) algorithm of Webster et
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al. [45-47], which has been used to simulate the electronic relaxation of an ex-
cess electron in bulk water. In order to make the iterative determination of the
Pechukas force tractable, they limit transitions to take place over a relatively
short time interval A¢, which is chosen to match some characteristic quantum
dephasing time for the system of interest. In all of the initial applications of
this method [45-47], the mixed quantum state used to determine when transi-
tions take place was also resolved into the occupied state at the end of each At
interval. Because of the difficulty in calculating the nonlocal force, this inter-
val must be relatively short—on the order of a few classical steps. Subsequent
studies have found [42—44] that the overall rates of electronic relaxation are
very sensitive to the choice of this decoherence time, and have suggested that
the time scales for mixed state propagation and determination of the Pechukas
force be separated, with the correct determination of the former time interval
being critical to obtaining correct rates of nonadiabatic relaxation. Given that
the time scale for the evaluation of the Pechukas force must be short (~ 1 fs
in the solvated electron simulations) and that the velocity rescaling procedure
in MDQT is equivalent to applying the Pechukas force for an infinitesimal du-
ration, it is not clear that the additional complexity and expense of the SPSH
algorithm yields a significant advantage.

While there are a number of other prescriptions for performing MQC
classical dynamics, MDQT stands out because of its simplicity. None of the
more sophisticated semiclassical methods [48-51] has been applied to systems
with a large number of degrees of freedom, such as are found in the condensed
phase or the molecular clusters studied here. Several methods have been re-
cently introduced that make use of classical trajectories but employ a fully

quantum mechanical description of the dynamics in nonadiabatic coupling re-



137

gions [40, 52-55]. These methods have been shown to give accurate results for
problems in which the nonadiabatic events are rare and highly localized, but
they require considerably more care to implement. MDQT can be carried out
easily for any system where the potential surfaces for the states of interest can
be calculated. The only additional requirement is the evaluation of the nonadi-
abatic couplings, which along with the evaluation of the forces, is discussed in
Sec. 4.3 below. Integration of the quantum amplitudes (Eq. 4.46), determining
when hops occur, and scaling of the velocities following a hop are all described
in Sec. 4.2.3 and require minimal computational overhead. A large number of
studies have now shown that MDQT can be used to obtain accurate qualitative
and often quantitative information about nonadiabatic processes occurring in
a wide range of physical systems [23, 29-37, 39, 56-60]. The major source of
continuing concern in obtaining accurate results from MDQT trajectories is
the length of time the quantum mixed state used to determine surface hopping
is allowed to propagate before being resolved. This problem and some possible

solutions are discussed in the next section.

4.2.2 Quantum Decoherence

Quantum decoherence arises in complex systems because the elec-
tronic wave function is periodically collapsed due to its interaction with the sur-
rounding medium—superposition states are rapidly resolved into eigenstates,
squelching interference between parts of the nuclear wave function evolving on
different states [42, 44]. This helps to explain why surface-hopping techniques
in general work so well in large systems; quantum decoherence assures that the
dynamics on all but very short timescales are governed by the forces from a

single potential surface.
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Two fundamental problems arise when the mixed quantum state used
to determine surface hopping is propagated indefinitely. The first is that spu-
rious interference effects may arise from multiple passages through regions of
strong nonadiabatic coupling. An example of this effect was given in the previ-
ous section. The second problem is that the nonadiabatic transition rates may
be incorrect. We saw an example of this problem in the discussion of the SPSH
algorithm, where the interval for propagation of the mixed state was too short.
Incorrect transition rates also arise when the decoherence time is too long. It is
generally believed that extensive averaging over initial conditions will mitigate
the effects of spurious quantum interferences, because in systems with a large
number of degrees of freedom one expects these coherences to be very sensitive
to the initial conditions and thus to wash out easily when the initial conditions
are averaged over. We are unaware of any studies that test this expectation.
Averaging also does not solve the problem of incorrect transition rates, and
some method of determining the decoherence time and resolving the mixed
quantum state on this time scale must be devised.

Building on work by Nitzan and coworkers [61, 62], Rossky and
coworkers [42—-44] have used a frozen Gaussian approximation to the nuclear
wave function to estimate decoherence times in multidimensional systems. The
starting point of the analysis is a Golden rule expression for the nonadiabatic

transition rate from state 1 to state 2,

k1o = /_ dt <ZZdn[R t)] - v(2 (t )dm[R(l)(O)] .VT(YIL) (0) J(t)> . (4.52)

where the angle brackets denote an average over the initial conditions, n and

m tun over the nuclei, d,[R®(t)] is the nonadiabatic coupling between states
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1 and 2 evaluated at the nuclear positions given by propagating the initial
configuration on state 2 for time t, and v () are the velocities obtained from
the same propagation. J(t) is the overlap between the nuclear wave functions

propagated for time ¢ on the two different potential surfaces,
J(t) = <X(R(O)) |eiH2t/he_iH1t/h| X(R(O))>. (4.53)

Eq. 4.52 shows that the transition rate is determined by the product of two
correlation functions given by the evolution of the nuclear positions on states 1
and 2. The time scale on which these correlation functions decay to zero is the
time scale over which a nonadiabatic transition beginning at ¢ = 0 contributes
coherently to the nonadiabatic transition rate. Transitions beginning at later
times affect the rate incoherently. The time scale for the decay of the integrand
in Eq. 4.52 is thus the desired decoherence time we wish to obtain.

The first term in the integrand, given by everything except J(¢), is the
autocorrelation of the nonadiabatic coupling vector projected onto the nuclear
velocities, the same quantity that gives rise to state mixing in the classical
path expression for the quantum amplitudes, Eq. 4.46. The length of time
required for the decay of this autocorrelation function is determined by the
size of the coupling region. The effect of this first term is also included in
the classical path equations for the quantum amplitudes; the transition rate in
both formulations depends on an integration over the nonadiabatic coupling.

The overlap term J(t), however, is unique to the perturbation theory
formulation and is the key to understanding the quantum decoherence. Decay
of the nuclear overlap places an upper bound on the time scale for the loss of

quantum coherence in nonadiabatic transitions, and has been used to define
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the characteristic decoherence time [42-44]. The influence of J(t) explains the
observation made in the previous section that the time scale for resolution
of the mixed state, i.e. loss of coherence, is related to the difference between
the two coupled potential surfaces. We see now that decoherence is directly
related to the decay of overlap between wavepackets in the classical coordinates
propagated on the two potentials.

The loss of quantum coherence signaled by the decay of the nuclear
overlap can be quantified by making a Frozen Gaussian approximation to eval-
uate the nuclear wave functions [42—44]. Inserting these Gaussian functions
into the expression for J(t) gives a short time approximation to the overlap,

whose decay is given by

J(t) o exp {Z ﬁ [F(0) - F2 (0)}%2} : (4.54)

where F)(0) and F2(0) are the forces on states 1 and 2 at the time of the tran-
sition, and a,, are the widths of the frozen Gaussians, which can be estimated

using the thermal de Broglie wavelength,

1 MukT

p = 597 = —5 -
)\%h 27Th2

(4.55)

As discussed by Neria and Nitzan [62], there is some arbitrariness in the choice
of these widths, but Eq. 4.54 can be used to give a rough estimate of the
decoherence times for a given application. By averaging J(t) over an ensemble
of photodissociation trajectories, we have found that for I; Ar, clusters the
decoherence time is on the order of several hundred fs. This time scale is two

orders of magnitude longer than the decoherence times for the solvated electron,
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which are about 1 fs [42-44]. We thus expect the effect of decoherence on the
transition rates to be substantially smaller for our problems.

Now that we have identified the problems posed by quantum deco-
herence and identified a method for evaluating the decoherence time scale, the
question becomes how to patch the MDQT method to make use of this infor-
mation. In his original description of MDQT [24], Tully suggested a method for
quenching the quantum coherences by introducing phenomenological quench-
ing parameters. This can be done by propagating the quantum state using
the quantum density matrix, px; = cxcj. The equations for propagating the

density matrix in the adiabatic basis are

1
— (1= 8k;) pri,
Td( kJ)PIcJ

Prj =3 (Ej — Ex) prj + Z (PklR ~dj; — piR - dkl)
I

(4.56)

where the last term introduces damping of the off-diagonal elements, i.e. the
coherence, on the characteristic time scale 7;,. The above expression for the
overlap decay (Eq. 4.54) can be used to provide an estimate of the appropriate
choice for the decoherence parameter 7,. Bittner and Rossky have implemented
a similar procedure and made a systematic study of the effects of varying the
decoherence time in both model problems [42] and for simulations of the sol-
vated electron [44]. For the model problems they showed that shortening the
decoherence times had the effect of washing out the quantum interference, and
had a significant effect on nonadiabatic transition rates and other observables
that depend on these rates. For the solvated electron, they have shown that the
choice of decoherence time is critical in determining correct excited state life-

times, and that the very small experimental isotope effect for DO is probably
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due to a substantially longer decoherence time in DyO than HyO [43]. The use
of a phenomenological density matrix for determining hopping probabilities in
conjunction with perturbation theory estimates of the decoherence times may
thus provide a powerful method for solving the problems posed by quantum
decoherence.

In the future it will be interesting to apply these methods to the
photodissociation problems studied here, in which the decoherence times, the
duration of the nonadiabatic coupling and the number of coupling regions are
all substantially longer. In the interim, we have chosen a more ad hoc approach
to handling quantum decoherence effects. Our solution is to reset the quan-
tum amplitudes to specify a pure state after passage through each coupling
region, i.e. we set ¢y = 1 for the occupied state and all other amplitudes to
zero. This procedure addresses the problem of spurious quantum interferences
resulting from multiple passages through nonadiabatic coupling regions, but
does not directly affect the rates of nonadiabatic transitions. As mentioned
above, the fact that the quantum decoherence times are several orders of mag-
nitude longer in our systems means that the transition rates are less likely to
be strongly affected by quantum decoherence effects. Resetting the quantum
amplitudes in between coupling regions has the drawback that in more com-
plex systems the coupling regions are often not well separated, meaning that in
practice quantum amplitudes may still be preserved for much longer than the
characteristic decoherence time. It is essential not to reset quantum amplitudes
when the coupling is strong, because this can cause serious errors in the hop-
ping probabilities, particularly in regions with weakly avoided crossings. Thus
the threshold coupling to reset the amplitudes must be chosen large enough

that resetting occurs frequently, but small enough to avoid spurious effects.



143

Although this procedure seems to work in practice, as discussed in Sec. 4.2.3

below, there is obviously some arbitrariness in choosing the threshold coupling.

4.2.3 The Surface-Hopping Algorithm

The algorithm used in this work to compute surface-hopping closely
follows the MDQT prescription of Tully [24, 27] with some modifications to ac-
count for quantum decoherence. At the beginning of a trajectory the quantum
amplitudes are initialized with the amplitude of the initially occupied state set
to one and all others set to zero. At each time step, the classical equations
of motion are propagated forward one classical time step, A. The equations
for quantum amplitudes (Eq. 4.46) are then integrated on this interval using
an adaptive time step that is much smaller than A to ensure convergence of
the amplitudes. This second integration adds a negligible cost to the compu-
tation of trajectories. Values of the adiabatic energies and the nonadiabatic
couplings are obtained along the interval through linear interpolation using the
values from the classical trajectory computed at the endpoints of the interval.
The classical time step must be small enough that the adiabatic energies are
smoothly varying functions on the interval, so that interpolation of their val-
ues is accurate. The nonadiabatic couplings may be computed exactly at the
interval endpoints, but we have chosen to follow the prescription of Tully and
Hammes-Schiffer [27] and compute [R. - d;](t + A/2) by a symmetrized finite
difference, which is discussed in more detail in Sec. 4.3 below. The values
at t — A/2 are saved and linear interpolation and extrapolation are used to
compute values intermediate between ¢ and ¢t + A. The overlap of the quan-
tum eigenvectors at successive classical steps is required to meet a threshold

(usually 0.9) in order to ensure that narrow regions of strong coupling are not
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missed by the integration. The classical stepsize is adaptively reduced when
the overlap falls below threshold.

The “fewest switches” algorithm determines surface hopping from the
probability flux rather than the amplitudes themselves. The change in proba-

bility per unit time of occupying state k is given by [24]

pre = — ) 2Re[cjci(R - dyy)]

Zbkj, (4.57)

i#k

so the probability flux out of state k into state j per unit time is —by;. Over
a finite time interval At, the probability of making a hop from state k to state

jis

o N (A

t
ik (1) ’

9kj = (4.58)

where pgi(t) is the probability of occupying state k at time ¢. These transition
probabilities can be integrated along with the quantum amplitudes at little ex-
tra expense. At the end of each classical time step, the transition probabilities
are used to determine whether hops take place based on comparison with a
random number 0 < ¢ < 1. A hop can take place to state j only if gx; > 0 and
¢ < gkj- The number of hops between states is minimized by this first criterion
that gp; > 0, which means that hops take place only when there is a net flux
of probability into the target state. If multiple gi; are greater than zero, hops
are determined by considering the target states in succession, subtracting g,
from ( for each state to which no hop occurs. If no hop is made to any state,

integration of the trajectory continues on the current state k.
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When the “fewest switches” algorithm determines that a hop should
occur, the velocities must be adjusted to conserve energy in the new state.
Hops generally occur between states when the energy gap is very small, so while
it is reassuring to maintain energy conservation, it is not clear that velocity
scaling is crucial in systems with a large number of molecules. Nevertheless, the
MDQT procedure calls for scaling the velocities by applying an instantaneous
force in the direction Re[dy;]. Scaling the velocities subject to a set of arbitrary
constraints on the velocities in the system requires determining a single scale

factor v, where the velocities for each atom 7 are changed according to

2

new __ ys0ld v (4)
vi(y) = v§ +ERe[dkj]. (4.59)

The molecular constraints are applied to v**¥(-y) using the method described
in Sec. 4.1.3 above. In order to conserve the total energy, the change in the

kinetic energy due to scaling must satisfy
AEkin(’Y) = _AEpOta (460)

where AFE,. is the difference in potential energy between states k£ and j.
AEy, () is a quadratic function of v with positive curvature, so to deter-
mine the new velocities it is necessary only to find the root of Eq. 4.60 with
the smaller absolute value. The smaller root is chosen in order to minimize
the changes made to the velocities by the scaling. When the target state is
higher in energy than the current state, i.e. AE, is greater than zero, Eq. 4.60
may not have any real roots, in which case the hop is rejected and the current

state is not changed. The MDQT procedure also specifies that the component
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of the velocity in the direction of the nonadiabatic coupling be reversed [27],
which is equivalent to finding the unique nonzero root of AFy,(y) = 0. This
velocity reversal occurs because the trajectory is said to be reflected off the
barrier to the target state in the direction of the Pechukas force, which for an
instantaneous transition coincides with Re[dfj}]. In practice, tests on photodis-
sociation in I; Ar, clusters seem to indicate that performing the reversal has
little effect on the branching ratios [56] but does have the undesirable effect of
introducing instantaneous dephasing of the solute vibrations. This effect has
also been noted by Miiller and Stock [23], who have suggested dropping this
procedure from the MDQT algorithm.

The implementation of surface hopping in this work collapses the
quantum amplitudes onto a single state periodically during the course of a
trajectory to mitigate the effects of spurious quantum coherence. Amplitudes
are only reset if all of the nonadiabatic couplings fall below a certain threshold
value (10~° atomic units was used in this work). In this work the amplitude
resetting was attempted only at 100 fs intervals along each trajectory. This pro-
cedure does not damp coherence that arises in extended coupling regions, but
prevents coherence from arising for separate passages through strong coupling

regions.
4.3 Forces and Nonadiabatic Couplings

Computing MD trajectories and surface-hopping requires determina-
tion of forces on the adiabatic potentials and nonadiabatic couplings between
the potential surfaces. Calculating these quantities is generally the most time-

consuming part of any simulation (other than analysis of the results), and
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therefore requires careful consideration. This section is divided into four sub-
sections: Sec. 4.3.1 discusses the general formulas for evaluating these forces
and nonadiabatic couplings; Sec. 4.3.2 presents a finite difference method for
calculating nonadiabatic couplings [27]; Sec.4.3.3 discusses phase matching of
complex eigenvectors, which is required for the current problem because of
the Kramers degeneracy resulting from unpaired electron spins; and finally
Sec. 4.3.4 gives formulas for evaluating the derivatives of the model Hamilto-
nian described in Chapter 2 and discusses how these derivatives are converted

into forces on the primary atoms.

4.3.1 General Formulas

If we assume that the adiabatic states, 1, are defined in terms of an

orthonormal set of functions, ¢,, such that

k) = ZPnk|¢n>, (4.61)

then the Hellmann-Feynman [63] theorem gives the forces on state &

Fr = — V(U Hpe) = — (0| VRH 1) (4.62)

The important point here is that calculating the forces requires only derivatives
of the Hamiltonian and not the derivatives of the eigenfunctions, which are
more complicated to compute. The nonadiabatic couplings are given by an

off-diagonal version of this relation [21, 64, 65]

a5 = W’Jgﬁﬂ V8 ST Ty (60| Vi), (4.63)

nn'
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which involves derivatives of the basis functions, but not of the coefficients that
define the adiabatic states. This is useful because obtaining the derivatives of
the eigenvector coefficients is a much more involved process than obtaining the
eigenvectors themselves, which is done using canned matrix diagonalization
routines. Computing the nonadiabatic couplings requires evaluation of the

derivatives of the basis functions with respect to the classical coordinates,

Dnn’ = <¢n‘VR¢n’> (464)

Often these derivatives can be neglected if the basis functions are independent
or slowly varying functions of the classical coordinates. In the case of the low-
lying electronic states of I, all of these couplings vanish for symmetry reasons.
For the electronic wave functions of other molecules expressed in a basis of
isolated molecule wave functions, this may not be the case. The electronic
wave functions of the isolated molecule, the ¢,, are themselves made up of
linear combinations of primitive basis functions with the coefficients given by
an electronic structure calculation. This can be either an ab initio calculation or
a semiempirical method such as diatomics-in-molecules. The isolated molecule

wave functions are expressed as

$a(r;R) = Y 0o,(R)fs(r; R), (4.65)

where the fs(r;R) are the primitive basis functions, which could be atomic
oribitals in the case of an ab initio or DIM calculation. The matrix elements

involving the derivatives of the basis functions ¢,, can then be written as a sum
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of two components

Dnn’ = Z (a’nszan’s’<fs|fs’> + ansan’s’<fs|vR‘fs’>) (466)

ss’

The first term involves derivatives of the eigenvector coefficients of the primi-
tive basis functions, while the second term involves derivatives of the primitive
basis functions themselves. Usually the primitive basis functions attached to
a molecule depend only on the internal coordinates of that molecule, in which
case it is a straightforward matter to evaluate the first term using a simple
finite difference method. Such a scheme is implemented in the ab initio pro-
gram MOLPRO for example, and we have used it to calculated the nonadiabatic
coupling in bare ICI™, as described in Chapter 3. The second term is usually
neglected from dynamical calculations, because it is known to give rise to spu-

rious couplings [65, 66].

4.3.2 Finite Difference Nonadiabatic Couplings

The full nonadiabatic coupling vector is required by the MDQT
method only when hops occur; at other times the couplings required to in-
tegrate the quantum amplitudes (Eq. 4.45) can be computed by a simple finite
difference scheme [27]. In this scheme, the couplings are evaluated using a
central difference at the midpoint of the classical integration step, following

the determination of the classical coordinates and the adiabatic eigenvectors
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at t + A. We require the matrix elements of the time derivatives

Rodut+4/2) = (10/0)(t+5)

=D (Fi‘u (t+ A/2)T it + A/2)bpw

nn'

05t + A/2) [R Dyt + A/2)| Tt +4/2))

(4.67)
It is convenient to express this formula in a matrix notation as

R-d(t+A/2) = THt+A/2) -T(t+A/2)
+TH(t 4+ A/2) - |R Dy (t + A/2)| -T'(t + A/2).

(4.68)

This expression can be evaluated by making several central difference approx-

imations at ¢ + A/2

T'(t+A)+T(¢t)

T(t+A/2) — :
P+ A2) = P(t+AA)—F(t)
s oy = RUHAZRO
D(t+A/2) = D(”AQ”D“). (4.69)

The first term in Eq. 4.68, when evaluated using these central difference approx-
imations, is identical to the finite difference scheme used by Hammes-Schiffer
and Tully [27]. As mentioned above, linear interpolation and extrapolation are

used to determine the values of the couplings required for integration of the
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quantum amplitudes using a time step smaller than A. The accuracy of the
finite difference approximation to the coupling is controlled by requiring that
the overlap of the eigenstates at adjacent time intervals exceed some threshold

value, i.e.

(Y (t) e (t + A)) > tol, (4.70)

where tol in our simulations is taken to be 0.9. When the overlap of any of the
eigenstates falls below threshold, the size of the classical time step is reduced

until this criterion is satisfied.

4.3.3 Phase Matching of Eigenvectors

In the open-shelled molecules studied in this work the presence of
unpaired electron gives rise to state degeneracies that are not lifted by any
electrostatic interactions with the solvent. Numerical determination of these
degenerate eigenstates results in an arbitrary phase being associated with each
of the degenerate eigenvectors. If this phase is not preserved in calculations
at neighboring geometries, the nonadiabatic coupling calculated from these
states will oscillate wildly, making numerical integration of the quantum am-
plitudes impossible. Several ad hoc methods of handling this problem have
been suggested [31, 54, 66], and a more rigorous approach has also been re-
cently developed by Krylov et al. [39, 60]. Unfortunately, the details of this
latter method remain unpublished. We have adopted instead the procedure
of Maslen et al. [66], which is discussed here in detail. The eigenvectors de-
termined by this method of phase matching have been tested numerically by

comparing values of the nonadiabatic couplings computed analytically using
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Eq. 4.63 with couplings computed using finite differences. The good agreement
for the couplings computed using these two different methods shows that the
phase matching scheme adopted here is adequate for computing nonadiabatic
dynamics on these potential surfaces.

Maslen’s phase matching prescription requires that the nonadiabatic

couplings vanish for each member of the degenerate manifold
(1;10/0t|yx) =0, Vj k€K, (4.71)

where K denotes the indices of the manifold members. This requirement can

be written in matrix notation as
Tt ()T x (¢) + T (1) (R : D) Tx(t) =0, (4.72)

where T'x(t) is a matrix whose columns contains the manifold eigenvectors.

Using a finite difference approximation to the time derivative

Fr(t) 0 LECF AA) —Twe(t) (4.73)

this equation can be manipulated to give

Tw(t+A) =[1—6R-D|Tx(?), (4.74)

where 0R = R (¢t + A) — R(t). Now if I',-(t + A) contains the eigenvectors ob-
tained from numerical diagonalization of the Hamiltonian, the phase matched

eigenvectors at the new time are related to these unmatched eigenvectors by
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the unitary transformation

' (t+ A) = T (t + A)U. (4.75)

Putting this into the phase matching requirement given by Eq. 4.74 gives the

desired transformation matrix

U=TL(t)[1+0R-D|T%(t+A). (4.76)

U is only unitary in the limit of an infinitesimal time step, so to maintain
the orthonormality of the phase matched eigenvectors, U is transformed using

symmetric orthogonalization,
Upew = S71/2U, (4.77)
where
S = UU". (4.78)
A central difference approximation is used for the basis function derivatives
_D(t+A)+D(t)

D~ . 4.
- (479)

This procedure for determining the phase matched eigenvectors has minimal
computational overhead and has been shown to maintain phase continuity, as
demonstrated by the accuracy of the nonadiabatic couplings determined using

the finite difference formulas of the previous section.
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4.3.4 Derivatives of the Model Hamiltonian

In Chapter 2 we presented an effective Hamiltonian for clusters in-
cluding the electronic states of the solute and the interactions among solute
and solvent molecules. We now discuss the computation of the analytic deriva-
tives of this Hamiltonian that are needed to determine the forces and nonadia-
batic couplings. The discussion includes only the derivatives of the electrostatic
terms, since derivatives of the remaining pairwise terms are standard quantities
in MD simulations and have been discussed extensively elsewhere [3, 67]. The
derivatives of the electrostatic terms are expressed in Stone’s notation [68, 69]
as forces and torques acting on the individual multipole sites. The procedures
for converting these forces and torques into forces on the primary atoms, as
required by our method of computing the molecular dynamics, are described
following discussion of the basic derivatives.

The effective Hamiltonian for the electrostatic and induction-

dispersion interaction of the solute and solvent can be expanded into five terms,

A 1
= SQ-T-Q+4-T-Q
1 . 1, .
—EQ‘T'X‘T'Q—Q‘T'X‘T'Q—§Q'T'X'T'q,

(4.80)

where the first two terms contain the interactions among the permanent mul-
tipoles and the last three terms contain the interactions of the permanent mul-
tipoles with the induced moments. It is convenient to discuss the derivatives
arising from each of these interactions separately because of the large number

of terms that arise. The derivatives are computed in terms of the generalized
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coordinate X;, which represents the Cartesian and angular coordinates of each
of the multipole sites in the system.
The forces due to the first term in Eq. 4.80, the interactions of the

permanent solvent multipoles, are given by

w _ 190 o 1.
Eo= 28Xz-(Q T-Q)
1. 0T
= _§Q'8X-'Q’ (4.81)

where we have assumed for simplicity that the multipoles contained in Q do not
depend on any of the coordinates X;. Because this term does not depend on
the electronic state of the solute, it contributes the same to all of the adiabatic
forces and does not contribute to the nonadiabatic couplings. Computation of
the forces from this equation and the similar but more complicated expressions
presented below may be performed very efficiently. The tensor T contains only
pairwise interactions so that there are at most 12 nonzero derivatives of each
element Ty, because each multipole site is defined by three position and three
orientation coordinates. In fact, since F, = —F,, there are at most 9 unique
derivatives. As we will see below, computation of these derivatives involves
simple terms already required for the evaluation of the energy, and calculation
of the adiabatic energies and forces is only about three times as expensive as
calculation of the energies alone.

Terms involving the solute multipole operators g depend on the solute
electronic state. The matrix elements of the derivatives of the second term in

Eq. 4.80, the interactions of the solute multipole operators with the permanent



156

solvent multipoles, are given by

9
(d5)i = <¢j WQ'T‘Q“%>
_ o 9T o OR: (0qs L
= o Q+6Xi<aRc T Q), (4.82)

where (dﬁ)), refers to the matrix elements of the Hamiltonian derivatives rather
than the nonadiabatic couplings, which are computed from these derivatives
using Eq. 4.63. q;;, represents the matrix elements of the multipole operators,
(¢jla|or). Derivatives of these operators with respect to the internal solute
coordinate R, are nonzero, and are determined, as are the multipole operators
themselves, by cubic spline interpolation. It is in fact rare during the course
of a trajectory that all of the derivative matrix elements are evaluated in this
way—only when the full nonadiabatic coupling vector is required to adjust the
classical velocities following a hop. The remainder of the time only the force
on a given adiabatic state v is required, for which only the expectation value

of the multipole operators, (q),, are necessary. The adiabatic force is given by

0y @y, - 01 . qq OB (Ha)s 1.
(Fy )i = (@) X, Q+8Xi ( A% T-Q). (4.83)

Because only the expectation value of q is needed, computation of the forces
arising from the quantum wave function is only marginally more expensive
than calculation of the purely classical forces.

The terms involving the induced moments can be evaluated by making
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ox AT +a ™
0X; 0X;
N AR,
oT
—-X X, X (4.84)

The forces due to the third term in Eq. 4.80, the interactions of the permanent

solvent multipoles with the induced multipoles, are given by

7®

(3

0

1
20x, @ TxT-Q
oT 1. aT
Q- gr Mg 5Ag g Ag (4.85)

which has been simplified by identifying the induced moments, Ag = —x-T-Q.

The matrix elements of the derivatives of the fourth term in Eq. 4.80, the cross

term between the solute and solvent multipoles interacting with the induced

moments are

YA Ag+ Ay -

—G4-T-x-T-Q

y

oT
0X;

Q, (4.86)

0
<</5j ax, (
OR. (0qjk

oT 8_T
0X;

Aq

0X;

where Ay = —x - T-q,, are the induced moments due to the solute multipole

matrix elements. It is also useful to express the forces arising from this term
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on the adiabatic state 1,

Wy _ _ORc (0(@)y L oT
B = —5x, (aR TrAe) — (@ 5y,
T T
AT Mg AT (4.87)

where Ay, = —x - T-(q)y. The fifth and final term in Eq. 4.80, which arises
from the interaction of the solute multipoles with the induced moments, is
a two electron operator and is thus somewhat more complicated to evaluate.
This operator is determined in terms of one electron operators by inserting
the identity operator, 1 = > |0n)(#n|, which is approximated by restricting
the sum to the basis set used in the calculation of the adiabatic states. The

derivative matrix elements are then given by

0
(d) = <¢,- —,(—%q-T-x-T-a>‘¢k>

_ —Z{ (aan TAnk+8anTA]n>

OR,
oT oT
+an' 87 'Ank+an' 87A]n
oT
+Ajn . 87 ' Ank} . (488)

The adiabatic forces arising from this term simplify to

(F); —Z{

(aq’”" T-A, )+Re(q¢n-T-An¢)

OR
1 oT
+§A¢"'3—X,-'A"’”}’ (4.89)
where qyn, = (¢[q|¢n) and A,y == —Xx - T - qny. This completes the formulas

required to compute the derivatives and forces for the effective Hamiltonian
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model. While the equations are a bit cumbersome to look at, they have been
coded in an efficient computer program and, as mentioned above, are only
about 3 times more expensive to compute than the adiabatic energies alone. We
have tested all of the forces and nonadiabatic couplings computed analytically
using the above formulas against finite difference approximations to the same
quantities to ensure that the coding has been done correctly. The correctness of
the forces is also verified by the fact that energy is conserved to high precision
along MD trajectories and that the errors in the total energy scale quadratically
with the step size when using the velocity Verlet algorithm [3, 11].

We now discuss evaluation of the derivatives of the interaction tensor
matrix elements required to compute the forces. The tensor matrix elements
derived by Stone and coworkers [68] are expressed in terms of 16 basic variables
involving the multipole site positions and the axes used to define the multipoles.
The interaction between two multipole sites ¢ and b on molecules A and B is
illustrated in Fig. 4.3. The fundamental quantities that occur in the tensor
formulas are R, the separation vector between sites a and b, and the multipole
axes, W, = X, Ya, Zq and Wy = Xp, ¥, Zp- The axes defining the multipoles on
each site may in general differ from the molecular axes, but they are taken to
be the same in this work. The 16 variables that occur in the interaction tensor
formulas are Rqp, W, - Rap, Wi - Rgp, and w, - wy. So, for example, the tensor
element between the z component of the dipole moment on site a and a charge

on site b is given by

(4.90)

In Stone’s formulation the derivatives of these tensor elements are converted
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to forces and torques acting on the molecular center of mass by making use
of the chain rule and the derivatives of the 16 basic variables with respect the
the center of mass position and orientation [68, 70]. This method assumes that
the molecules are rigid, and the approach must be modified to apply to the
nonrigid molecules, particularly the solute, considered by our method. We do
this by converting the derivatives of the tensor elements with respect to the
16 fundamental variables to forces and torques acting on the multipole sites.
These forces and torques are then converted to forces on the primary atoms
following an additional application of the chain rule to determine the derivatives
of the multipole positions and orientations with respect to the primary atom
positions. As mentioned in Sec. 4.1.1, this process is straightforward for linear
molecules but cumbersome for larger molecules, and a general procedure for
determining these derivatives has not to our knowledge been worked out.

The forces and torques acting on the multipole sites for any given
interaction pair can be determined from the derivatives of the fundamental
variables with respect to the multipole positions and orientations. The deriva-

tives with respect to the positions are [68, 70]

_ Rab _ Rab
Vg, (Rap) = Rt Vr, (Rap) R,
vRa (Wa . Rab) =W, VRb (Wa . Rab) = —W, (491)
Vi, (W - Rap) =wp, Vg, (W - Ryp) = —wy
VRa (Wa Wb) =0 VR(, (Wa . Wb) =0

Application of the chain rule to derivatives of the expressions for the Ty, given
by Stone and coworkers [68, 69] using these equations gives the desired forces

acting on the multipole sites. For example, the force acting on site a due to
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Z
a z,
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Figure 4.3: Vectors describing the interaction of two multipole sites on different
molecules. Vectors denoted by a capital letter are fixed in the space frame,
while lowercase vectors are body-fixed.

the dipole-charge interaction listed above is given by

3(Wa - Rab)Rab W
R2, kG,

The torques about the space-fixed axes are given by the derivatives of the
body-fixed multipole axes with respect to rotations about the space-fixed axes.
The derivatives of a vector fixed in body-fixed frame with respect to rotations

of the body are given by
VQ = —VBF X . (493)

Using this relation and the fact that the site separation vector R, is indepen-

dent of the body-fixed frames, the formulas necessary to compute the torques
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(

(o (4.94)
( —

(

The torque acting on site a due to the dipole-charge interaction listed above is

w, X Rab

(4.95)
Rgy

ab _
Vﬂa T10,00 -

There is no torque on a site containing only a charge.
The conversion of these torques to forces on the primary atoms re-

quires an additional application of the chain rule
(VRE)torque = VR - Vo E. (4.96)

To determine the forces on the primary atoms due to the torques it is necessary
to calculate the derivatives of orientation of the body-fixed axes with respect
to the primary atom positions. For a linear molecule, i.e. a molecule with just
two primary atoms whose positions are R; and Ry, the necessary derivatives
are

1

Vg, Q= -Vg,02=—
- =R

Rz X, (4.97)

where R = R; —Rjy. Thus the torques on the multipole sites of a given linear
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molecule are converted to forces on the primary atoms by
1
Firowe = —Fprae =) ~gpRe X (4.98)
a

It should be straightforward, if tedious, to obtain the necessary derivatives for
torque conversion in a nonrigid polyatomic molecule. All that is required is
a precise (and preferably closed-form) expression for the body-fixed axes in
terms of the primary atom positions. The required derivatives may then be
computed analytically or numerically. While the resulting derivative formulas
are likely to be cumbersome, numerical evaluation is not likely to slow down
calculation of the trajectories because the work required will scale linearly with

the number of atoms.
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Chapter 5

Dynamics of I, Ar, Photodissociation

In a recent experiment, Lineberger and coworkers [1-3] have studied
the photodissociation of I; molecular anions embedded in size-selected clusters
containing 1 to 27 argon atoms.! As had previously been found for I, clustered
with COq [5], the presence of the solvent argon atoms around the I, solute can
force the I atoms to recombine after dissociation, a process known as caging.
The relative abundance of recombined products increases smoothly but rapidly
with the number n of argon atoms in the precursor cluster, from zero for n <10
to 100% for n >16.

When the recombined products are analyzed according to their mass,
they fall into two classes. In the first, all or nearly all of the argon atoms
have been lost, indicating that I, has relaxed to the neighborhood of its vi-
brational ground state with the excess energy being removed by evaporation
of argon atoms. In the second, referred to as “metastable,” a much larger
number of argon atoms remains bound to the solute. Vorsa et al. [1] infer
that in these products ground-state I; has not been formed, and suggest two
possibilities for the metastable species: a solvent separated pair in which I and

[~ are separated by one or more argon atoms, or a trapped excited state in

LThis chapter is a modified form of Ref. 4
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which the I atoms have recombined into the weakly bound *II, 3/, state (see
Fig. 5.1). Provided that evaporation is able to cool such species to low vibra-
tional states in the excited electronic state, they are expected to be relatively
stable since collision-induced electronic transitions will be highly improbable
when the molecule is near its equilibrium geometry. Further evidence for this
interpretation is found in recent femtosecond time-resolved photodetachment
experiments by Neumark and coworkers [6]. The transient photodetachment
spectrum of the photodissociation products displays a shift that can be at-
tributed to the formation of Iy in an excited electronic state.

In the smaller precursor clusters, where caging is incomplete, Vorsa
et al. [1] find a bimodal distribution in the dissociated products as well. At
n=13, for example, the I~ based products fall into two distinct groups, one
having 0-3 argon atoms and the other having 5-7 argon atoms. The average
number of remaining argon atoms in the second group scales linearly with the
precursor cluster size, but the average number in the first group is independent
of cluster size.

In this chapter nonadiabatic MD simulations are used to elucidate
the mechanisms that give rise to the various product channels observed in the
experiment. Photodissociation of molecular cluster ions presents a major chal-
lenge for such simulations, since the polarized solvent strongly perturbs the
electronic structure of the solute. We treat these perturbations by means of an
effective Hamiltonian, constructed by evaluating the solvent-solute interaction
in the representation defined by ab initio electronic states of the isolated solute.
At each step of the simulation this Hamiltonian is diagonalized, providing the
the energies, forces, and nonadiabatic transition probabilities required to prop-

agate the trajectories. The results of our simulation reproduce the observed
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Figure 5.1: Scaled ab initio gas phase potential curves for I,. The arrow
shows the 790 nm photexcitation to the QHQJ /2 state modeled in the current
simulations.
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trends in the experimental dissociation probabilities and branching ratios. For
the recombined photofragments, we find no evidence for solvent-separated pairs
but we do find significant recombination into the excited state. For dissociated
fragments, we find that the low-mass product channel arises from ejection of
an I~ ion from the cluster. This peculiar dissociation mechanism is driven
by “anomalous charge switching” [7] in the *II ;/, excited state. The parallel
polarizability of I, in this state is negative, so that charge flows towards the

less solvated atom.

5.1 Methods

As described in Chapters 2 and 3, the solute is treated as a diatomic
molecule whose electronic states are perturbed by the interaction with the sol-
vent, assuming that there is no charge transfer to the solvent. Since the solute
electronic states become nearly degenerate as the molecule dissociates, they
can be strongly mixed by even a relatively weak perturbation. This mixing
is accounted for by constructing a Hamiltonian using as a basis the lowest six
electronic states of the bare I, ion, obtained from a recent ab initio calcula-
tion [8]. Within this basis the matrix elements of the solute-solvent interaction,
which couple the states of the isolated molecule, are computed. The interac-
tion between the charge distribution of the I; ion and the induced moments
on the polarizable argon atoms is responsible for most of the coupling in this
system. By diagonalizing this Hamiltonian and taking its derivatives, the en-
ergies, forces, and nonadiabatic couplings required for a full treatment of the
dissociation dynamics on the multiple electronic potential energy surfaces are

obtained. The eigenstates also allow computation of solute properties, such
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as the charge distribution and the transition moments, which are vital for un-
derstanding the dynamics and for making comparisons between the model and

experiment.

5.1.1 Model Hamiltonian

For convenience, the model Hamiltonian of Chapter 2 is presented
here in a notation that is somewhat simplified by the absence of permanent

solvent multipoles. We write the Hamiltonian of the solute-solvent system

H=h°+Y b+ H™+ A, (5.1)
A

where hC and the h* are the Hamiltonians of the solute and solvent respec-
tively, H™™d describes the induction and low frequency dispersion interactions
between the charge distribution of the solute and the polarizable solvent, and
He" represents the short-range solute-solvent and solvent-solvent interactions
arising from dispersion and repulsion. Since the solvent is confined to its ground
electronic state, the h# terms are constants and are left out of the calculations.
The lowest six electronic states of the isolated solute form the basis for
evaluating H. hCis clearly diagonal in this representation, and the I potential
curves which define it are shown in Fig. 5.1. Although the two electronic states
that dissociate to give spin-orbit excited iodine do not participate directly in
the photodissociation dynamics investigated here, their presence in the basis
is important for an accurate description of the ?II,; 2 wave function, which
undergoes a fundamental shift in character as the molecule dissociates [8]. The
depth of the ground ZEL /o State well has been scaled from the ab initio value of

0.905 eV to bring it into agreement with the most recent experimental value of
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1.01 eV [6]. The equilibrium bond length R, of the scaled ground state is 3.32
A. The excited states have also been scaled by holding the energy difference
with the ground state fixed at the ab initio value. R, and D, of the scaled
21,32 are 3.96 A and 158 meV. Each of the states shown has a two-fold spin
degeneracy, bringing the total number of basis states to 12. While interactions
with the solvent do not lift this degeneracy, the full Hamiltonian does not
factorize in a way that makes it possible to reduce its dimension [7].

The properties of the solute electronic wave functions are represented
in the form of distributed multipole operators [9, 10]. Moments up through
the quadrupole are included on each of four expansion sites, one on each iodine
atom and two along the bond (these bond sites are removed as the molecule dis-
sociates). The diagonal elements of the distributed multipole operators provide
an accurate representation of the charge distribution in each electronic state.
In a polar solvent, for example, diagonal matrix elements of the solute-solvent
interaction Hamiltonian would arise from the charge distribution of each elec-
tronic basis state interacting with the charge distribution of the solvent. The
off-diagonal distributed multipole operators represent transition charge densi-
ties and give rise to coupling between the electronic basis states in the presence
of an electric field, thus allowing the solute molecule to polarize in response to
the solvent. Because all of the low-lying states of I, are included in the model,
the off-diagonal distributed multipoles should provide a reasonably accurate
representation of the solute polarizability.

The lowest order interactions between I; and the argon cluster arise
from electronic polarization of the solvent. This is a collective, many-body
effect involving distortion of the charge clouds on both solute and solvent

molecules. We assume that the time scale for polarization fluctuations in the
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solvent is much shorter than that for charge flow in the solute [11-13]. This
limit should be valid here since the electronic excitation energy of argon is
much larger than the energy gaps between the first few excited states of I, .
Following Stone’s compact notation for the multipole moments and interaction

tensors [10, 14], the induction Hamiltonian may be written as [15]

~. 1 _
Hlnd — _iﬂA . (aAA)—l . [1 + aAA . TAA:| 1 . IaA (52)

it = - (5.3)

where ¢¢ is the solute distributed multipole operator, « is the solvent polariz-
ability tensor, 744 is the interaction tensor between solvent atoms, and 74¢
is the interaction tensor between solvent atoms and the solute distributed mul-
tipole sites. 1! represents the multipoles induced on solvent molecules by the
distributed multipole moments ¢¢ on the solute. Since we include only the
dipole polarizability of argon (11.07 au [16]), the g# are simply the first order
induced dipole moments on the solvent atoms. The inverse term in brackets
in Eq. 5.2 implicitly takes into account the mutual interaction of the polarized
solvent molecules. Constructing it is equivalent to solving the familiar equilib-
rium linear response equation [10] for the induced dipoles, and computing the
quantity [1+ a4 - T44] . 44 is equivalent to iterating the induced solvent
dipoles to self-consistency. If the induced dipole operators were replaced by
classical variables, Eq. 5.2 would be simply the classical induction energy of
the solute electrons in the field of the polarized solvent.

The short-range interactions are described by pairwise-additive po-
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tentials. The Ar-Ar interactions are modeled by an isotropic Lennard-Jones
potential with R, and D, fit to match experimental values [17]. Values for all
of the interaction parameters discussed here are given in Chapter 3. Fitting
the Ar-I potential is complicated by the fact that this interaction depends on
the orientation of the empty p orbital on the iodine atom. This anisotropy is
physically important because it enables the argon solvent atoms to reorient the
p orbital hole on the I atoms, and thus to change the molecular 2 quantum
number. Without inclusion of this anisotropy, no excited state recombina-
tion is observed in the model. The anisotropy is modeled by adding a 1/R®
short-range interaction term having the same angular and state dependence
as an ion-quadrupole interaction; this is equivalent to expanding the angular
dependence of the potential in Legendre polynomials and retaining the first
nonvanishing anisotropic term, proportional to Py(cosf). This term, together
with an isotropic Lennard-Jones potential, enables us to obtain a good fit to
the experimental potential curves for both the I-Ar and the I"-Ar interactions,
determined from photodetachment spectra [18].

The model Hamiltonian enables us to compute the six-state multi-
dimensional potential surface of arbitrary-sized 15 (Ar), clusters. In order to
carry out molecular dynamics and surface hopping, we must be able to com-
pute derivatives of the Hamiltonian matrix elements with respect to all of the
nuclear coordinates, which is discussed in Chapter 4. Computation of these
derivatives is greatly simplified by the use of Stone’s notation and formulae for

the electrostatic interaction tensors and their derivatives [10, 14].
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5.1.2 Structure, dynamics, and surface hopping

Molecular dynamics trajectories are computed on the model potential
surfaces using the velocity version of the Verlet algorithm [19] as described in
Chapter 4. The ensembles used to study the photoexcitation dynamics were
composed of 41 configurations obtained following an initial equilibration of 10—
20 ps by sampling a 400 ps trajectory at an interval of 10 ps. A timestep of
10 fs was found to give adequate energy conservation during the equilibration
period. The photoexcitation process was simulated by placing the the solute
in the 211, ; /2 state after adjusting the Iy bond length so that the initial energy
gap between the ground and excited states matched the 790 nm photon energy.
The maximum bond length adjustment required was about 0.04 A, so this
procedure had little effect on the initial configurations except to scale the total
kinetic energy release on the excited state to approximately the experimental
value. Ensembles were prepared at two temperatures, roughly 40 and 50 K, for
the cluster range n = 6,8 —17,20. These temperatures, chosen to match the 40
K estimate of the cluster temperature in the experiments [1], roughly straddle
the solid-liquid phase transition region. The underlying cluster structure was
also investigated by performing conjugate gradient optimizations [20] on the
equilibrated ensembles.

To simulate the nonadiabatic dynamics during the photodissociation,
we follow the recent surface-hopping method of Tully [21]. In this method the
quantum state amplitudes are integrated along a trajectory using the time-

dependent Schrodinger equation

J
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where ¢; is the quantum amplitude for state i, E; is the energy of adiabatic
state 1, R(t) is a vector containing all of the nuclear velocities, and d;; is the
nonadiabatic coupling vector between states 7 and j. At each time step the
probability of hopping to another state is computed, and the occurrence of a
hop is determined probabilistically using Tully’s “least switches” algorithm [21].
This algorithm minimizes the total number of hops along a given trajectory
while ensuring that the fraction of the total ensemble in a given quantum state
will approach the probabilities given by the integration of Eq. 5.4.

When a hop occurs, the velocities are scaled to preserve energy con-
servation, and the hop is rejected if this scaling cannot be performed. Reference
22 describes an additional “velocity reversal” procedure, in which the velocities
in the direction of the nonadiabatic coupling are reversed following a rejected
hop. For reasons discussed in Chapter 4, this procedure was not used in sim-
ulation results presented here, and we have found that including this scaling
does not affect the final product distributions.

Simply integrating Eq. 5.4 along an entire trajectory has been shown
to give incorrect transition probabilities arising from spurious coherence effects
[21, 23], which are discussed in more detail in Chapter 4. Following the analysis
suggested by Schwartz et al., we have estimated the quantum decoherence times
for this system to be 100-200 fs in the coupling regions. The current results
have been obtained from trajectories in which the quantum amplitudes are reset
at an interval of 100 fs. We have found that increasing this interval and/or
resetting the amplitudes only in regions of weak coupling have no significant
effect on the product distributions.

Following photoexcitation, trajectories were run with a fixed classical

timestep of 2 fs, while the quantum amplitudes were integrated using an adap-
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tive Runge-Kutta method [20] with a much smaller time step. The quantities
E;(t) and R(t) - d(t);; were computed at the intermediate steps of the adaptive
integration by the interpolation and extrapolation methods [22] described in
Chapter 4. In regions of strong nonadiabatic coupling the classical timestep
was also made shorter to ensure accurate calculation of the transition ampli-
tudes. The trajectories were continued until the nuclear configurations met one
of two product criteria: dissociative products, where the I-I distance surpassed
the cutoff distance of 30 A, or recombined products, where I, had undergone
more than 10 vibrational oscillations in a particular potential well. The time to
product formation ranged from 5 to 50 ps. The product criteria were carefully
tested and we believe the branching ratios for the model have been accurately
determined. The product mass distributions are also reasonably accurate, but
should be shifted to lower solvent mass due to the relatively short trajectory

lengths and the long times required to evaporate the final argon atoms.

5.2 Results

Figure 5.2 shows the binding energy of each argon atom added to the
cluster for the lowest energy structures of I, Ar,, along with the particularly
stable structures obtained for n = 6, 13, and 20. The optimized structures
show that the argon shell is built up by formation of six-membered rings. The
first ring forms around the I, waist, the second around one end of the solute. A
single argon atom caps the end, completing the half-shell configuration shown
in the middle of Fig. 5.2. The filling of the third ring with cap completes the
solvation shell around I; at n = 20. Although two more atoms may crowd

the cap positions in n =21 and 22, these structures are somewhat strained.
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Each completion of a ring or filling of a cap site produces a structure of greater
relative stability. The most stable structures at n = 6, 13, and 20 correspond
exactly to the noted peaks in the experimental mass spectrum [1], suggesting
that the model potential captures the essential structural features of these
clusters.

The dissociative trajectories produce two distinct classes of I7Ar,,
products for the precursor cluster range 11 < n < 14. The low-mass products,
m < 2, result from direct ejection of I~ from the cluster. This process is
depicted in Fig. 5.3(a). The initial configuration, with solvent atoms bound
primarily to one end of the cluster, is typical of clusters in this size range and
illustrates what we call “asymmetric solvation.” The I, dissociates rapidly
passing 10 A separation in the first picosecond of the trajectory, during which
the charge localizes on the less solvated I atom. The initially solvated atom is
arrested quickly by the solvent. I is slowed by its attraction to the solvent
but escapes dragging a single argon atom. During the I™ escape there is no
opportunity for charge transfer because the energies of the states with different
charge character remain well-separated. The formation of the low-mass I~
product is also accompanied by the production of a large neutral cluster, I-Arg.

Figure 5.3(b) shows a trajectory which dissociates to form highly
solvated I7. The initial solvent configuration is more symmetric around I
than in Fig. 5.3(a), and the solvent atoms are in a better position to catch the
escaping [7. By 1 ps solvation of the two I atoms is roughly equal, and further
solvation of I~ produces electronic relaxation to a normal charge switching
state by about 2 ps. Charge transfer to atom 2 is precluded because of the
large I-I separation (>10A) at these times. The rapid transfer of the solvent

facilitates the escape of the neutral I atom, which is notably faster than the
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Figure 5.2: Sequential binding energies of argon to I obtained from the lowest
energy structures. The energy for adding the nth argon atom is plotted, and
the structures of “magic number” clusters for n = 6, 13, and 20 are shown.
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Figure 5.3: Photodissociation of I; Ar;3. The adiabatic energies, the location
of the charge (Agq), and the I-I distance are plotted as a function of time.
The heavier line in the top panel shows the energy of the currently occupied
state. Snapshots of the configurations showing the localization of the charge
are shown at ¢ = 0, 1, and 5 ps. (a) shows a dissociative trajectory which
forms I7Ar; and [-Arg as a direct result of the anomalous charge switching.
(b) shows a dissociative trajectory which forms I~ Ar; and I following solvent
transfer from atom 2 to atom 1 during the first few ps. (c) shows a trajectory
which recombines in the excited electronic state ultimately forming I Ars.
Near 4 ps a charge transfer takes place returning the I; to a normal charge
switching state where it recombines and the charge delocalizes.
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escape of I in Fig. 5.3(a). The neutral escapes faster because of its weaker
attraction to the remaining cluster, leaving behind I~ Ar;.

The distinct dissociative channels produce a bimodal distribution of
[~ Ar,, products similar to that observed in the experiments. Figure 5.4 shows
the product distribution for the I; Ary precursor. The two modes are present
for all precursors in the range n = 11-14 but merge for n < 10. As in the
experiment, the center of the high-mass distribution increases with cluster size,
while the low-mass distribution remains centered around m = 0 or 1.

Figure 5.3(c) shows a trajectory which recombines in the excited
1,5 /2 state. The initial solvent asymmetry is intermediate between the trajec-
tories shown in Fig. 5.3(a) and 5.3(b). The solvent arrests the escape of I~ by
about 2 ps, but the solvent interactions are not strong enough to induce elec-
tronic relaxation until the solute internuclear separation has returned to about
6 A. Electronic relaxation occurs via transfer of the charge to atom 2 at around
4 ps. During the subsequent recombination in the excited electronic state, the
charge again becomes delocalized. Trajectories which recombine in the ground
electronic state are qualitatively similar to the one shown in Fig. 5.3(c).

Roughly half of the trajectories which produce I -based products re-
combine in the ground electronic state, and the other half recombine in the
excited %Il 3/, state. We do not observe any I -based products where solvent
atoms separate the two iodine atoms. Recombination on the ZHg,g /2 state ap-
pears to produce excited-state I; products with very high efficiency, despite
the shallow well depth of this state. Very few trajectories that pass R, of I,
during recombination in the excited state subsequently dissociate to form other
products. No dissociation is observed when recombination proceeds past R, in

the ground electronic state.
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Figure 5.4: I~ Ar,, product distributions from the I, Ar;, precursor. For this
cluster size the simulation gives 39% dissociation compared to 54% in the
experiment. The simulated distribution is expected to shift to slightly lower
mass as the trajectories are extended in time.
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The branching between recombination in the ground and excited
states produces a bimodal product distribution of I -based photofragments.
This separation in the product masses arises from the approximately 850 meV
difference in the binding energy of the two electronic states on which recombi-
nation occurs. Recombination in the excited state releases far less energy and
therefore evaporates significantly fewer argon atoms. The trajectories have not
all been run for long enough to resolve accurate photofragment distributions
for the recombined products, but the large separation in the product channels
shows up even at short times.

Figure 5.5 shows the overall branching ratios for photofragmentation
from ensembles with an initial temperature of 50 K and demonstrates the gen-
erally good agreement between the model and experimental results. The error
bars shown in Fig. 5.5 represent the statistical sampling error which arises
from the relatively small size of the ensembles. We have generated much larger
ensembles for selected cluster sizes and verified that the branching ratios are
converged to within the estimated error limits. The simulations reproduce
particularly well the rapid closing of the dissociative channel between n = 10
and n = 16. However, the dissociative branching depends strongly on the
temperature of the initial ensemble, so it is premature to make much of the
quantitative agreement. This surprising temperature dependence might be as-
sociated with what appears to be a solid-liquid phase transition in the 35-50 K
range. The simulation results also agree well with the experimental finding of
roughly equal amounts of low- and high-mass I; -based products. The branch-
ing between these two products, which we attribute to ground and excited
state recombination respectively, deviates somewhat from the experimental re-

sults at intermediate cluster sizes but approaches the same limit in the larger
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clusters.

5.3 Discussion

The ejection of I~ during dissociation is the most surprising finding
of this study, and the mechanism by which this process occurs provides the
key to understanding fundamental aspects of the photodissociation dynamics.
The explanation for I" ejection lies in the electronic properties of the *II /2
state on which dissociation takes place: the component of the polarizability
parallel to the molecular axis is negative, so that charge tends to flow towards
the less favorably solvated atom [7, 24]. This behavior, which we have called
“anomalous charge switching,” may be understood by considering the eigen-
functions of a particle in a slightly asymmetric double well, or the bonding and
antibonding states of a heteronuclear diatomic molecule. In each example, the
ground state wave function localizes on the lower-energy well or atom, so by
orthogonality the excited state wave function must be polarized in the opposite
direction.

Anomalous charge switching arises in our problem because the 2II, ; /2
state dissociates to I-Ar,, + I~ instead of the normal charge-switching asymp-
tote, I Ar,, + I*. The asymptotic behavior is determined by spin-orbit cou-
pling, so if a lighter halide such as chlorine were substituted for iodine, the
asymptote would become Cl~-Ar,, + Cl*, and the charge would switch nor-
mally.

Anomalous charge switching is evident in the trajectories depicted
in Fig. 5.3. In Fig. 5.3(a) I is produced when the solute remains in the

anomalously switching state throughout the trajectory. Charge localization
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Figure 5.5: Branching ratios for the products of I, Ar, photdissociation at
790 nm. The filled circles are the experimental data and the squares show
the simulation results. One o error bars based on the statistical sampling are
shown for n = 13. These ranges are representative of the errors at other sizes
since all of the ensembles contained 41 trajectories.
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on the less solvated I atom in Fig. 5.3(b) leads to solvent transfer at about
2 ps, allowing the escape of the neutral I atom. In Fig. 5.3(c) the charge
resides on the less solvated atom until the solvent induces a charge-transfer
near 4 ps which returns the solute to a normal charge switching state where it
recombines.

The first two trajectories demonstrate that low-mass I~ products can
arise from the same low temperature precursors as the high-mass products.
This finding contrasts with the proposal of Vorsa et al. [1] that the low-mass
products arise from high-energy isomers in which the I; is bound to the surface
of an argon cluster. We have found by simulating the proposed high-energy
isomers that the ion dissolves rapidly into the argon clusters on the timescale
of about 50 ps, and thus such species are unlikely to survive the 50-100 us
trip from cluster formation to photolysis. Vorsa et al. based their proposal on
the supposition that the low- and high-mass product channels are separated
in energy by about 300 meV and thus are unlikely to arise from precursors
similar in energy. The trajectory in Fig. 5.3(a) illustrates, however, the un-
expected result that anomalous charge switching leads to the formation of a
highly solvated neutral product which lowers the overall energy of the low-mass
channel.

Anomalous charge switching also plays a role in the rapid onset of
caging and the closing of the dissociative channels for 10 < n < 16. The
asymmetric solvation of the initial clusters in this range combined with the
flow of charge onto the less solvated atom results in an ion rather than a
neutral atom trying to escape from the cluster. The ion—induced-dipole forces
thus tend to pull the clusters back together where electronic relaxation and

recombination into the lower state potential wells are likely to occur. A simple
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energetic argument may explain the onset of recombination around n = 9 or
10. In both simulation and experiment, the binding energy of a single Ar atom
is estimated to be about 70 meV; combining this with the photon energy of 790
nm, the [ binding energy of 1.01 eV, and a nominal initial cluster temperature
of 40 K, we estimate that at least eight argon atoms must be evaporated in
order to reduce the energy of I, below the dissociation limit. The closing of
the dissociation channel well before the completion of the first solvent shell
may result from the fact that for n > 13 additional argon atoms are forced to
solvate the other iodine, creating a more symmetric solvent distribution and
placing the argon atoms in a better position to catch the escaping ion.

One final issue is what determines the state in which the recombina-
tion takes place. Both experiment and simulation show approximately equal
branching between the two recombination channels, with a slight propensity
for the excited state. Since at long bond lengths the two states differ only in
the alignment of the empty p orbital on the iodine atom with respect to the
molecular axis, this result suggests that the initial alignment of this orbital has
been mostly lost by the time the atoms recombine. A small number of I-Ar
collisions suffices to reorient the p orbital hole quite efficiently. This result is
not surprising since depolarization cross sections in the 2Py, states of heavy
atoms are known to be very large [25-27]. The slight propensity for the excited
state may result from the simple fact that it is initially closer in energy to the

photoexcited state and thus nonadiabatic transitions will more likely.
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5.4 Conclusions

Nonadiabatic molecular dynamics simulations have been used to in-
terpret the results of the cluster photofragmentation experiments of Lineberger
and coworkers. The two major classes of dissociated products correspond to
ejection either of neutral I atoms or of charged I~ ions from the precursor
cluster, the latter process being driven by the anomalous charge flow in the ex-
cited electronic state. The two major classes of I, -based products correspond
to recombination into either the ground state or the excited Il state. This
latter conclusion is in accord with those reached by Neumark and coworkers [6]
on the basis of time-resolved photodetachment spectra of the photoproducts.
The approximately equal branching between ground and excited state recom-
bination suggests that the during the photodissociation/recombination process
the orientation of the electron cloud on the I atom is largely randomized by
collision with the Ar atoms.

While this research was being prepared for publication, we received a
preprint in which Batista and Coker [28] simulate the same system with nona-
diabatic molecular dynamics applied to a semiempirical diatomics-in-molecules
Hamiltonian. While this Hamiltonian is constructed differently from ours, it
appears to contain the same essential physics. There are some differences in de-
tail between their results and ours but the overall trends are in agreement; they
also conclude that the high-mass recombined products arise from excited state
recombination. The fact that such similar results are obtained from these two
substantially different models suggest that both capture the essential features
of the problem.

A major finding of this study is that anomalous charge switching in



190

the excited state leads to ejection of a negative ion from the cluster. This mech-
anism would appear to be peculiar to small clusters, since in large clusters or
in the condensed phase an electronic transition to a normal charge-switching
state will occur before the ion can escape. However, anomalous charge switch-
ing itself may be important for large systems as well as small, particularly for
processes that are determined by short time dynamics. We intend to pursue

these issues in future publications.
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Chapter 6

Time-resolved Photoelectron Spectra of I; Ar,, Photodissociation

As discussed in Chapter 1, dihalide anion photodissociation in clus-
ters has been studied extensively both experimentally [1-9] and theoretically
[10-15], but several key aspects of the dynamics remain poorly understood.’
Little is known about the dynamics that take place on the excited state fol-
lowing photoexcitation or about what motions of the solute and solvent are
necessary to bring about electronic relaxation and product formation. Full
theoretical modeling of these photodissociation reactions is difficult because it
requires both a knowledge of the electronic structure of a manifold of states
strongly coupled to the many solvent degrees of freedom and a method of
computing the complex dynamics on these surfaces. Several groups have re-
cently developed semiempirical Hamiltonians for dihalides [17-19] and dihalide
anions [13, 14] interacting with rare gas atoms. The work of Batista and
Coker [13, 17, 18] has demonstrated the important role of nonadiabatic dy-
namics on the multiple potential surfaces in these systems following photoexci-
tation. Nonadiabatic molecular dynamics simulations of I, photodissociation
in argon clusters from Coker’s group [13] and confirmed by our group [14]

have achieved good agreement with the experimental photoproduct distribu-

LThis chapter is a modified form of Ref. 16
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tions [7]. These simulations, described in Chapter 5, helped to determine that
two previously ambiguous product channels in the experimental mass spectra
correspond to recombination of I, in an electronically excited state [13] and
direct ejection of I~ on a single adiabatic potential surface [14]. To obtain a
complete picture of the dynamics following I; photodissociation, however, we
need a direct link between the simulations and time-resolved measurements.

Neumark and co-workers [20] have recently measured the transient
photoelectron spectrum of I, Arg and I, Argy. In their experiment, shown in
Fig. 6.1, a 780 nm laser pulse with a width of about 100 fs excites I; to
the dissociative A’ state, and a subsequent UV pulse detaches an electron,
leaving neutral I, in a low-lying electronic state. The kinetic energy spectrum
of the detached electrons measures the electron affinity of the transient species,
serving as a probe of the anion electronic state and its interactions with the
local solvent environment. Using this technique, Neumark and co-workers were
able to identify the time required for complete dissociation in I; Arg and for
the recombination of I, into both the X and A states in I, Aryy [20].

This chapter describes calculations of the time-dependent photoelec-
tron spectrum of I; Arg and I Aryy. Good agreement is found with the exper-
imental spectra and the model is used to explore the underlying mechanisms

of dissociation, recombination, and relaxation.

6.1 Methods

The effective Hamiltonian model used to compute the potential sur-
faces of the I; Ar, has been discussed extensively in Chapters 2 and 3, and a

briefer description was given in the preceding chapter. To review, the Hamil-
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Figure 6.1: Femtosecond photoelectron spectroscopy of I Ar, photodissocia-
tion. A 780 nm pump laser pulse excites I to the repulsive A’ state. The 260
nm probe pulse detaches the excess electron, leaving I in one of its many low-

lying electronic states. The probe pulse shown detaches the electron following
cluster-induced electronic relaxation of I; to the A state.
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tonian is constructed in the space defined by the lowest six electronic states
of bare I, which are strongly coupled by the argon solvent. The energies and
wave functions of these I, states were determined using an ab initio calculation
with a semiempirical correction for the spin-orbit coupling [21]. The potential
curves used in the model (Fig. 6.1) were obtained by scaling the ab initio curves
to reproduce the experimental equilibrium bond distance and well depth for
the X state [20, 22] while preserving the ab initio energy spacings. The main
solute-solvent interaction arises from the induction of electrostatic moments
on the argon atoms by the charge distribution of I;. The operator that de-
scribes this interaction is computed from the ab initio wave functions and the
experimental polarizability of argon [14, 23]. The diagonal terms of the opera-
tor represent the interaction of the charge distribution of a particular I state
with the polarizable solvent atoms, while the off-diagonal terms contain the
coupling between the I, states induced by the solvent. The presence of these
terms allows the solvent to polarize the charge distribution on I;, an effect
that becomes strong as I, dissociates and the basis states become degenerate.

The electrostatic induction potential dominates both the energetics
and the couplings in the system. It is therefore practical to handle the remain-
ing interactions, which arise from dispersion and repulsion, empirically with
pairwise Lennard-Jones potentials between the atomic sites. The parameters
for the Ar--- Ar interaction are chosen to match the experimental values of R,
and D, for Ary [24]. The I- - - Ar parameters are adjusted so that the potentials
reproduce the experimental values of R, and D, for I7---Ar and the three
lowest states of I--- Ar [25]. An additional anisotropic 1/R® interaction term
is also required to reproduce the state-dependence of the open-shelled I--- Ar

interaction [14, 25]. Using this procedure ensures that all of the pairwise in-
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teractions in the system agree with experimentally determined potentials. The
dominant three-body terms in the potential come from the electrostatic induc-
tion operator described above.

Simulation of the photoelectron spectrum also requires a model po-
tential for the neutral clusters that result from detaching the electron from I,
leaving I in one of its many low-lying electronic states. In this work we have
assumed that the internal potential energy of Iy is given by the appropriate
gas phase potential curve, and the interaction energy is given by the pairwise
I- - - Ar Lennard-Jones potentials used to describe the dispersion and repulsion
parts of the I - - Ar interaction [14]. This approximation neglects the state-
dependent anisotropic components of the I--- Ar interaction [14], but we are
not computing dynamics on the IAr, potential surfaces and the experimental
energy resolution is on the order of 100 meV. The electron affinities of I~ Ar,
clusters calculated using the model potentials agree with the experimental val-
ues [26] to within about 10%. The simulation includes only the lowest ten
states of Iy [27-30], which degrades the accuracy of the simulated spectra be-
low about 0.7 eV in the electron kinetic energy. Three of these states are not
known experimentally, but are inferred from an ab initio calculation [31] to be
degenerate with either the known a or o’ states [30].

Using the model Hamiltonian and its derivatives, we simulate pho-
todissociation by running molecular dynamics trajectories augmented by
Tully’s method [32, 33] for computing hops between the coupled potential
surfaces. We mitigate the effects of spurious quantum coherence [34, 35] by re-
setting the quantum amplitudes periodically in regions where the nonadiabatic
coupling is weak [14]. The trajectory results give good agreement with the ex-

perimentally observed photoproduct distributions and, as we saw in Chapter 5,
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provided mechanisms for all four of the experimentally observed product chan-
nels, two of which were ambiguous from the experiments [7]. The simulations
of the photoelectron spectra described below were performed using a single
trajectory for bare I, 21 trajectories started from an ensemble equilibrated
to 40 K for I; Arg, and 81 trajectories started from an ensemble at 50 K for
I, Argy. In all three cases, increasing the number of trajectories and raising or
lowering the initial temperature has little effect on the simulated spectra.
The time-dependent photoelectron signal at energy E with pump-

probe delay A is calculated from a quasi-classical Golden Rule expression,

o(E, A) o < / " dtexpl—p(t — A7

—00

5 b (R0 P exp { ~2a(8) [ — £ = (1] (R - 1 (Rw)] }> ,
f

where the brackets denote an average over all trajectories, R(¢) is the nuclear
configuration at time ¢, ;¢ is the transition dipole for detachment of an electron
from state ¢ of I to state f of Iy, VIZE and Vlf are the energies of those states,
and hv is the probe laser energy. This expression is similar in form to the
one used by Batista and Coker to simulate the pump-probe signal from I
in rare gases matrices [18]. The parameters v4(E) and 7,, come from the
electron detector width and a convolution of the pump and probe laser widths.
Because the coordinate dependence of the transition dipoles is unknown, we
hold them constant. Simple one-electron selection rules from molecular orbital
theory govern which transitions are allowed [9, 36]; however, the large spin-orbit
coupling of iodine mixes the electronic configurations to such a high degree [21,

31] that these selection rules are valid only for transitions involving the X states
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of I or I, which are mixed the least because of their large energetic separations
from other states. The dipoles for the one-electron forbidden transitions from
the excited states of I, to the X state of Iy are therefore set to zero, while
transition dipoles to all other states of I, are set to one. We have also scaled
the relative magnitudes of transitions out of the X state of I; in order to
reproduce the relative intensities of the two bands in the I, Aryy spectra that
arise from detachment out of the X state. Transition dipoles to the I X state

and to the I, excited states are set to twelve and two respectively.

6.2 Results and Discussion

As a test of the simulation method, we have calculated the time-
dependent photoelectron spectrum of bare I;, which has been measured in
Neumark’s group [9]. The experiments probe the rapid dissociation that takes
place upon photoexcitation to the repulsive A’ state. The experimental and
simulated spectra shown in Fig. 6.2 demonstrate the good agreement we ob-
tain. In both simulations and experiment, a broad band peaked near 1.9 eV
at t = 0 shifts rapidly in about 200 fs over to the spectrum of I~ as the I
dissociates. The spectra evolve only slightly after 200 fs, suggesting that dis-
sociation is essentially complete by then: the I-I separation is 5.4 A at 200 fs
in the simulation. The band shapes at early times are sensitive to the convo-
luted laser pulse width, which at 200 fs is broad compared to the dynamics
being probed. The transient signal at high electron kinetic energy (>2.0 eV) is
also sensitive to the inclusion of the entire manifold of Iy product states. The
previous simulation of the experiment [9] failed to reproduce the high energy

transients, probably because it included only the X, A, and A’ states of I.
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Figure 6.2: Time-dependent photoelectron spectra of I at various pump-probe
delay times. Solid lines are simulation results and dashed lines are experimen-
tal results from Ref.9. The full width half maximum convoluted pulse width
and detector width are 250 fs and 0.150 eV. The bimodal peaks in the experi-
mental spectra seen at 250 and 400 fs are due to the large solid angle seen by
the magnetic bottle photoelectron spectrometer, coupled with an anisotropic
electron distribution of the I”—I transition.
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I; Arg also dissociates rapidly upon photoexcitation, but the argon
solvent atoms cause significant shifts in the observed spectra. As shown in
Fig. 6.3(a), the experimental and simulated spectra agree well, although there
are greater discrepancies at early times than seen in the bare ion spectra.
Fig. 6.3(b) shows typical cluster configurations during the dissociation along
with the localization of the negative charge, and Fig. 6.3(c) shows the evolution
of main peak position. Asin the bare ion, the peak shifts rapidly during the first
200 fs toward lower electron kinetic energy as the I, bond dissociates. In the
simulations, the argon atoms cluster about the waist of I; having little effect on
the dissociating ion. By 300 fs the I-I separation is 6.4 A, but the argon atoms
have moved only slightly. Because the argon cluster remains largely intact, it
exerts a shift of just over 100 meV in the peak position, corresponding to the
shift observed in cold I"(Ar), 5 clusters. By itself, this might suggest that
I (Ar),_5 clusters are somehow formed as an intermediate in the dissociation,
followed by rapid evaporation of argon atoms [20]. In our simulation, however,
dissociation is direct, with the argon atoms barely moving on the time scale of
the peak shift. As the dissociation continues, only 1-2 argon atoms on average
catch the escaping ion, and the peak rapidly moves to higher electron kinetic
energy, nearly attaining its asymptotic value by 1 ps. There is a slight drift
after 1 ps due to the gradual evaporation of argon from clusters in which more
than 1 argon atom catch I~.

The time-dependent photoelectron spectra of I; Aryy probe the dy-
namics of dissociation and recombination processes that evolve over multiple
time scales and potential surfaces. In both experiment and simulation, no disso-
ciated products are observed for this cluster size, and recombination may occur

in either the X or A states of I;. In addition to probing the early dynamics of
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Figure 6.3: Time-dependent photoelectron spectra of I; Arg with trajectory
snapshots. Spectra at several pump-probe delay times are shown in (a), where
solid lines are simulation results and dashed lines are experimental results from
Ref. 20. The full width half maximum convoluted pulse width and detector
width are 205 fs and 0.150 eV. The snapshots in (b) illustrate a typical trajec-
tory with argon atoms in white and iodine atoms in black. The minus sign on
the right iodine atom at ¢ >300 fs indicates charge localization on the initially
less solvated iodine [see Ref. 14]. The position of the main peak in the spec-
trum is plotted in (c) showing the large shift induced by the argon atoms at
300 fs.
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dissociation, the photoelectron spectra reveal the time scales for recombination
into these states and the subsequent time required for vibrational and solvent
relaxation. Fig. 6.4(a) shows the evolution of the main spectral peak. Up to 1
ps, the motion of the peak is similar to I; Arg, but the magnitude of the shift
is much larger due to the greater number of solvent atoms. Unlike in I Arg,
the shift toward higher electron kinetic energy between 0.4 and 1.0 ps is due to
heating and evaporation of the argon atoms as the dissociating iodine atoms
collide with the solvent cage. The simulations indicate that about 3-4 argon
atoms are evaporated from the cluster during the initial dissociation event. By
1 ps a substantial fraction of the trajectories have begun to recombine, and
between 1 and 5 ps the main peak shifts toward lower energy and diminishes
in intensity as two major new features appear in the spectrum at lower and
higher energies [see Fig. 6.4(b)]. The simulations show that the new features
are due to recombination in the X state, which opens up photoelectron tran-
sitions to the X state of I,. There is good agreement between the experiment
and simulation for both the shapes and positions of these new bands. The ap-
pearance and growth of the bands provide an estimate of the time required for
electronic relaxation and recombination to occur in the X state of I; —about
5-10 ps. Most of the trajectories in the simulation that recombine in the X
state do so between 3 and 5 ps, and all have recombined by 15 ps.
Subsequent evolution of the high energy band arises from vibrational
relaxation in the X state I;, which occurs rapidly in the first 10-20 ps after
recombination, but stretches out over several hundred picoseconds in both the
experiment and simulation. This band narrows and shifts to lower energy as I
relaxes in the X state well, increasing the energetic gap for photodetachment

to the X state of I from the inner turning point in the I; well. Figure 6.5(a)
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Figure 6.4: Time-dependent photoelectron spectra of I, Aryy. Solid lines are
simulation results and dashed lines are experimental results from Ref. 20. The
position of the main peak is shown in (a) as a function of the pump-probe
delay time. Full spectra at a series of delay times are shown in (b) where the
right panel shows the high energy tail due to detachment from the X state of
I;. The dotted lines show the experimental spectrum at 3 ns. The full width
half maximum convoluted pulse width and detector resolution width are 250

fs and 0.150 eV.
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displays the ensemble average of the I, total internal energy following elec-
tronic relaxation to the X state along with the average number of argon atoms
remaining in the cluster. During the first 20 ps, about 80% of the initial vibra-
tional energy is transferred into the solvent, which undergoes rapid evaporation
to dissipate the energy. The rate of evaporation decreases dramatically below
about n = 5, so that the solvent can no longer dissipate excess energy quickly,
and thus the rate of vibrational relaxation also slows. Vibrational relaxation is
not complete in either the experiment or simulation even by 200 ps. This result
reflects the dynamics of evaporation from the small clusters near the bottom
of the well rather than the characteristic ability of the argon solvent to absorb
energy from the excited solute. In a pump-probe experiment on I Ary;, Vorsa
et al. [8] have reported a time constant of 130 ps for the absorption recovery,
which probably also reflects this slow vibrational relaxation at the bottom of
the X state well.

The experimental and simulated spectra at high energies track each
other, although not as closely at longer times, probably indicating that the
rates of vibrational relaxation do not match exactly. The experimental spectra
reflect a somewhat slower rate of vibrational relaxation than the simulations,
which may be expected given that the simulations overestimate the I7--- Ar
interaction by about 10% (see Fig. 3.8). In the simulations I, can impart
somewhat more vibrational energy to the solvent before the solvent atoms lose
their ability to absorb the energy effectively. The experimental spectrum at
3 ns, shown by the dotted line in Fig. 6.4(b), demonstrates that upon further
vibrational relaxation the experimental spectrum more closely resembles the
simulated spectrum at 200 ps. The observed differences in the spectra at 200 ps

correspond to differences in the vibrational energy of 2-3 vibrational quanta,
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Figure 6.5: Vibrational relaxation and solvent evaporation in I, Aryy following
electronic relaxation to the (a) the ground X state and (b) the excited A state.
The solute internal energy, referenced to the bottom of the X state well, is
shown by the solid line, and the number of solvent atoms remaining in the
cluster, defined as inside a radius of 6.0 A from either iodine atom, is indicated
by the dashed line.
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or about 40 meV.

The evolution of the main spectral peak, plotted in Fig. 6.4(a), follows
the recombination and subsequent vibrational relaxation of I, in the excited
A state. This band loses intensity after 1 ps as about 40% of the ensemble
recombines in the X state, where the photoelectron transitions are shifted to
higher and lower energies. The position of the peak shifts to lower energy as the
remainder of the ensemble recombines in the A state. The shape and position
of the I~ band are not sensitive to the vibrational energy of the much shallower
A state well, so the vibrational relaxation is not reflected in the spectra. The
simulations reveal, however, that it takes only a few ps following recombination
in the A state for I, to lose nearly all of its vibrational energy, as shown in
Fig. 6.5(b). The peak continues to shift to lower energy out to about 50 ps,
after which there is a slight shift to higher energy. Some of the shift out to 50
ps probably arises from overlap with bands from X state detachment, which
continues to change on this time scale. By simulating the bands separately,
however, we determined that some of the shift occurs even in the absence of
overlap, because the recombination time in the A state is twice as long on
average as in the X state, with recombination in some trajectories taking as
long as 40 ps. The shift in the peak does not reach its maximal value until
all of the trajectories that recombine in the A state have done so. The slow
shift to higher energy after 50 ps reflects the continuing evaporation of argon
atoms [see Fig. 6.5(b)], dissipating the remaining excess energy of the clusters.
The main band at long times is much broader than the experimental energy
resolution, resulting from detachment to all of the different low-lying states of
I;. These states significantly affect the shape of the spectrum at both short

and long times.
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6.3 Conclusions

The I Arg simulations provide a clearer picture of the dissociation
than experiments alone were able to provide. Dissociation occurs directly, and
the transient shifts in the photoelectron spectra reflect the breaking of the I
bond, followed by the escape of I~ from the neutral solvent cluster. In I, Ary
the dissociated atoms recombine, and the simulations confirm the interpreta-
tion of the experimental shifts as arising from recombination in both the X and
A states of I, followed by vibrational relaxation. The agreement between the
model and experiment for the time scales of these processes suggests that the
simulations accurately depict the course of a chemical reaction evolving over
several different electronic potential surfaces with strong coupling to a solvent.
The discussion presented here also demonstrates the importance of modeling
in conjunction with the interpretation of experimental results for these sys-
tems. Nonadiabatic molecular dynamics simulations coupled with semiempiri-
cal Hamiltonian models should continue to provide a useful tool for examining
the dynamics of many reactions involving the excited states of charged species

in clusters and the condensed phase.
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Chapter 7

Dynamics of I, (CO,),, Photodissociation

This chapter discusses simulations of photodissociation in I (COs),,
clusters.! These are the first simulations of the excited state dynamics that
have been performed utilizing a realistic description of the excited state elec-
tronic structure. The solute-solvent interactions in these clusters are about
three times stronger than they were in the argon clusters discussed in the last
two chapters. This large increase in the coupling between the solute and solvent
has a profound effect on the dynamics following photoexcitation, particularly
for clusters with less than a complete solvation shell. It is no longer possible to
eject weakly solvated I~ from the cluster, so all dissociative products involve
electronic relaxation. The strong solute-solvent interactions also destabilize
the A state well (see Fig. 7.1, so that only transient recombination in this state
is observed.

The most interesting consequence of increasing the solute-solvent
coupling is the much stronger interplay that develops between the state-
dependent charge flow and motion of the solvent. Figure 7.2 illustrates the
state-dependence of charge flow for a simple two-state model borrowed from

the theory of electron transfer in solutions [2—4]. The diabatic potential curves

LThis chapter is a modified form of Ref. 1
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Figure 7.1: Scaled ab initio gas phase potential curves for I, . The arrow shows
the 790 nm photoexcitation to the A’ 2Hg,1/2 state modeled in the current
simulations.
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are two intersecting parabolas whose minima represent solvated iodide and
neutral iodine. When the solute bondlength is near its equilibrium value, the
electronic coupling is strong and the adiabatic curves are well separated en-
ergetically, as represented by the dashed curves. As the solvent moves along
the lower adiabatic curve, the charge follows the solvent from one side of the
solute to the other. However, the charge moves in just the opposite way on the
upper adiabatic state. A vertical excitation, as shown in the figure, changes
the solute electronic state, moving the charge from I4 to Ig; however, the sol-
vent still surrounds 14. The solvent moves towards the charge in an effort to
re-establish equilibrium. But, as the solvent coordinate crosses zero, and the
solvent favors I, the electronic state changes character and the charge returns
to I4. The solvent must change direction once again to pursue the charge. This
oscillation, which we have termed “anomalous charge switching” [5-7], persists
as long as the solute remains in the excited state. As we saw in Chapter 1,
anomalous charge switching is a direct consequence of the antibonding charac-
ter of the A’ state; in general we expect antibonding states to polarize in the
opposite direction compared to the normal, bonding states. The solid lines in
Fig. 7.2 represent a longer solute bondlength, where the electronic coupling is
weaker and transitions between states can occur when the solvent coordinate
is near zero.

The major focus of this chapter is to demonstrate that this simple
model accurately reflects the potential surfaces on which photodissociation and
recombination take place in I (COs), clusters. Two-dimensional descriptions
of the dynamics involving a solvent coordinate have been used in previous
studies of the I; vibrational relaxation in both clusters [5, 8] and liquids [9],

but this is the first use of such a picture to examine dynamics on the excited
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solvent coordinate

Figure 7.2: Schematic potential energy surfaces of solvated I;. Dashed lines
represent a cross-section at small -1 separations, where the bond coupling is
strong compared with the solute-solvent interactions. The solid curves repre-
sent the weak coupling limit, which arises at longer bondlengths ( Rgolute > 5 A).
Anomalous charge switching in the upper curves is illustrated by the cartoons.
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states.

7.1 Methods

The interaction potential between the solute I; and the solvent CO-
molecules is given by the model Hamiltonian in Chapters 2 and 3. This model
includes state-dependent electrostatic and induction interactions between the
solute and solvent based on ab initio calculations of the solute wave func-
tions [10] and experimental data for the solvent charge distribution [11] and
polarizability [12]. State independent atom-atom Lennard-Jones potentials ac-
count for the remaining dispersion and repulsion interactions and are fit to
reproduce the known I"—CO, and I—CO; potential curves [13]. The COy—
CO, interaction potential is taken from Murthy, et al. [11]. The model captures
the sensitive dependence of the solute charge distribution on the solute elec-
tronic state, the solute bondlength, and the positions and orientations of the
solvent molecules.

The methods for determining cluster structures, preparing initial en-
sembles, and computing the nonadiabatic dynamics following photodissociation
were described in Chapter 4. Nuclear motion on a single potential surface is
computed using the velocity version of the Verlet algorithm [14], while hopping
between electronic states of the solute is computed using Tully’s method [15, 16]
with some minor modifications.

For each cluster size studied, 41 trajectories were computed from
starting configurations obtained by sampling a single 400 ps trajectory with an
average temperature of 80 K. This temperature was chosen to lie on the upper

end of the solid-liquid phase transition region in the clusters, based on our
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previous experience that such temperatures gave reasonable agreement with
experimental results [7]. The products are determined by integrating the tra-
jectories until the nuclear configurations meets either of two criteria: the I-1
distance exceeds 20 A, or I; undergoes more than 100 oscillations in a par-
ticular potential well. The dissociation and recombination times vary from a
few picoseconds to over 100 ps in some cases where I, is trapped in an excited
electronic state before recombining. The time scale for evaporation of CO,
molecules from the clusters following photodissociation appears to be much
longer than the 50-100 ps over which the trajectories are integrated, and thus
we do not calculate the final product mass distributions, which are measured

experimentally at 5-10 us [17, 18].
7.2 Results and Discussion

Figure 7.3(a) shows three cluster structures obtained from 80 K en-
sembles. The average binding energy per CO, at 80 K is fairly constant at
about 200 meV for 10 < n < 18, while for smaller cluster sizes it dips to
about 190 meV. These values are consistent with the upper bound of 250
meV estimated from experiment that includes the kinetic energy released upon
evaporation [17]. The clusters develop a pronounced asymmetry in the range
7 < n < 13, which is illustrated by the middle structure at n = 10. More
symmetric solvent configurations are shown at n = 5, where the solvent tends
to clump about the waist of I, , and n = 16, the size at which the first solvation
shell is thought to close in the experiment [17]. The structures and energetics
we observe in our 80 K ensembles are in good agreement with earlier studies

using optimized geometries [5, 19, 20).
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Figure 7.3: (a) Ensemble average of the magnitude of the solvent coordinate
as a function of cluster size. Typical structures for n = 5,10,16 are shown.
(b) Branching ratio for the products of I; (CO;),, photodissociation at 790 nm.
The filled circles are the experimental data and the squares show the simulation
results. The 1o error bar shown for n = 10 is based on the statistical sampling
and is representative of the error bars at other cluster sizes.
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To quantify the degree of solvent asymmetry, we define a solvent
coordinate, A®, as the change in energy when a charge of —e is moved from 14
to I for a fixed nuclear configuration. The average magnitude of A® in the 80
K ensembles peaks at n = 10 and is a factor of 5 smaller for n = 16, as shown
in Fig. 7.3(a). Large values of A® exert a strong force to localize the charge
on the favored atom, so that in the most asymmetric configurations, 60% of
the excess charge in ground state I, resides on the favored end of the molecule.
Large initial solvent asymmetries also strongly influence the dynamics following
photodissociation, as we discuss below.

Figure 7.3(b) compares the product branching ratios calculated from
the model with the experimental results of Vorsa et al. [18, 21]. The 1o error
bar shown results from sampling a relatively small number of trajectories—41
for each cluster size. The discrepancies between simulation and experiment
are within the uncertainties for all but a few cluster sizes, and thus the model
accurately reproduces the rapid onset of caging with increasing cluster size
observed in the experiments [17, 18]. Also in agreement with experiment are the
results that all of the dissociated products arise from ejection of neutral I atoms
leaving behind solvated I~, while all of the recombined products are based on
I, in its ground electronic state. In contrast, for argon clusters experiment
[18] and simulation [7, 22| found additional product channels corresponding to
ejection of I~ ions and to recombination of I, in the A state (see Chapter 5).

In Fig. 7.4 we plot the trajectories for n = 9 and 16 in two dimensions:
the solute bondlength, and A®. The three panels shown for each cluster size
partition the trajectories based on electronic state. All trajectories begin in the
A’ state, shown in the top panel, at Ryoue = 3.3 A. Upon reaching the coupling

regions marked with ovals, trajectories make transitions to the lower-lying A
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and X states, shown on the left and right respectively. Transitions between
these two lower states can also occur in the regions outlined with rectangles.
For simplicity, we do not show the dynamics on the %I, 3 /2 state; it is accessible
from the A’ state and exhibits anomalous charge switching.

A main feature of the dynamics on the A’ state is the narrow range of
solvent coordinates observed in the coupling regions. One might expect that as
Rgonute increases the charge and solvent would tend to localize on a single iodine
atom. But the A’ surface has anomalous character; so that, as depicted in
Fig. 7.2, solvent asymmetry creates charge flow toward the less solvated atom,
which in turn pulls the solvent back towards more symmetric configurations.
Anomalous charge switching thus creates a steep valley on the A’ potential
surface, funneling trajectories into symmetric solvent configurations. The n =
16 trajectories begin with a fairly narrow range of solvent asymmetries that
tightens somewhat upon dissociation. The funnel shape is more striking for
n = 9, where there is a much broader range of initial solvent coordinates. For
large initial A®, the charge jumps to the escaping atom which slows down and
pulls solvent molecules away from the other atom until the solvent configuration
becomes nearly symmetric.

Anomalous charge switching also prevents dissociation on the A’ state,
because the attraction of the COs to 1™ is so strong that the negative ion cannot
escape. The A’ funnel thus has a well in the dissociation coordinate that traps
the trajectories in a region where the Rgoyute is about 5-7 A. The maximal
extension of the solute bond in the A’ state is somewhat larger on average for
n = 9 than n = 16, but dissociation cannot occur in either case or for any of the
cluster sizes studied. In contrast, much larger separations and even I~ ejection

were observed in simulations of comparable cluster sizes in I5 Ar, [7, 22].
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Figure 7.4: Dynamics of an ensemble of 41 trajectories projected onto the
solute bondlength and the solvent coordinate for n = 16 (a) and n = 9 (b).
Trajectories begin in the A’ state at Ryuie=3.3 A and undergo transitions to
the lower states in the regions indicated with ovals. A <+ X coupling regions
are marked with rectangles. The apparent favoring of the right side of the A
state in (b) is due to the few trajectories that remain trapped for a long time.
(This figure was painstakingly prepared by N. Delaney.)
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Following the concerted dynamics in the A’ state, electronic relaxation
to the X and A states generally takes place less than one picosecond after
photoexcitation. The effect of returning to a normal charge switching state
is dramatic: charge localizes completely onto one solute atom and the solvent
races to the ion, increasing the magnitude of A® to 1 eV or more within 200-
500 fs. Meanwhile, Rg,ue hardly changes. The disparity in response time
of the solvent and the solute often results in a solvent-separated pair with
CO9 molecules tightly clustered to I~ and the I atom residing on the surface.
These pairs, which were not observed in simulations of I Ar, clusters [7, 22],
eventually either dissociate, via thermal evaporation of I, or recombine on the
X state.

Trajectories are often trapped for extended periods in the A state
prior to recombination or dissociation, as shown in Fig. 7.4. A state trapping
is observed rarely in small clusters, but is common in cluster sizes n > 7. Both
the frequency and length of trapping increase with cluster size. Residence times
of 5-25 ps are typical, but product formation can require as long as 50-100 ps.
We also observe transient recombination of I, that is, some trajectories pass
within Reute = 4 A the equilibrium bondlength, on the A state. However,
the excited state I, bond is weak compared to the I~ - CO4 solvation energy
and the bond is broken before appreciable vibrational relaxation can occur.
Nevertheless, both of these metastable cluster configurations contribute to the
long lifetimes on the A state.

Formation of recombined products following trapping on the A state
requires a coordinated sequence of events. The A state and the X state differ by
the alignment of the empty p orbital on iodine. For Ryoute > 5 A the alignment

of that orbital is readily altered by collisions with solvent molecules [7, 23],
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causing electronic transitions back and forth between these two states. To get
recombination on the ground state, the solute bondlength must increase for
the orbital to be realigned; simultaneously, neutral iodine must break into the
first solvation shell, displacing COs.

On the ground state, the covalent bond is roughly an order of mag-
nitude stronger than on the A state and is comparable in size to the total
solute-solvent interaction. Once a trajectory reaches 56 A on the X state,
the strong bond force draws I, back together; the solute rapidly recombines
and the magnitude of the solvent coordinate never exceeds 0.5 eV thereafter.
Trajectories that hop from the A’ state to the X state at short bondlengths
recombine directly in roughly 1-3 ps, without forming the solvent-separated
pair.

There are two pathways for I dissociation. During trapping on the
A state, neutral iodine is the most weakly bound species in the cluster and
therefore readily evaporates. This is the dominant dissociation mechanism for
n > 9. In the smaller clusters, dissociation is generally more direct, with Rgute
increasing monotonically following the transition from the A’ state. Direct
dissociation arises because there are fewer solvent molecules to hold the solute

atoms together.

7.3 Conclusions

In summary, photoexcitation of I, with a 790 nm photon places the
solute on the A’ electronic surface, which like the anomalous curves in Fig. 7.2,
funnels the trajectories into highly symmetric solvent configurations as I; dis-

sociates. Following electronic relaxation, the A and X surfaces, like the normal
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charge switching curves in Fig. 7.2, pull the trajectories towards highly asym-
metric solvent configurations. The electronic coupling on the A state is small,
and the strong solute-solvent interactions destabilize the weak I, bond, allow-
ing formation of long-lived solvent-separated pairs. Eventually, trajectories in
the A state either dissociate or hop to the X state, where the much larger elec-
tronic coupling creates a strong pull towards permanent recombination, which
occurs rapidly if Rgute < 56 A. The strong ground state I, bond also leads
to direct recombination within a few picoseconds for a significant fraction of
trajectories.

The results presented here emphasize that the isolated I; potential
curves can be misleading when interpreting the dynamics of photodissociation
and recombination in COs clusters. When COj is present, for example, the A’
state is not dissociative and also I; cannot recombine permanently in the A
state. Previous analyses of pump-probe experiments in these clusters [24-26]
have used the isolated curves to locate the Franck-Condon regions for probe
absorption. Our results suggest that coupling to the solvent will shift these
regions significantly, possibly leading to new interpretations of the experimental
signals and the dynamics—particularly the coherent feature observed at 2 ps.
Finally, while it is the large solvent asymmetry of the cluster environment that
produces the interesting dynamics we report here, we anticipate that these
effects may be an amplification of phenomena which occur in the liquid phase

as a result of solvent fluctuations. This possibility warrants further study.
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Chapter 8

Dynamics of IC1~(CO,), Photodissociation

Chapter 1 briefly mentioned the surprising results of IC1~(COs),, pho-
todissociation, where only uncaged, Cl~-based fragments are formed for n > 10.
In I, as we have seen, once the solvent cage reaches a certain size, roughly
corresponding to a complete shell around the solute, only recombined prod-
ucts are observed. It appears that in ICI™ the forces favoring localization of
the charge onto a single atom are strong enough to break the solute chemical
bond, or at least prevent it from reforming.

Figure 8.1 illustrates the photodissociation of ICI™ on the bare ion po-
tential curves that were described in Chapter 3. Nadal et al. [1] have measured
the photofragmentation of products from bare ICI™ and ICI" (CO,),, clusters
following excitation with a red photon, as depicted by the arrow in the figure.
Excitation of the bare ion to the A" (*IT;5) state leads to the formation of I~
and Cl. At 644 nm, only I products are observed in the experiment; at 740
nm, however, there appears to be some overlap with the perpendicular tran-
sition to the A (*Il3/5) state, and a small amount of C1~ (6%) is formed [2].
Because the amount of excitation to the A state is very small in both the bare
ion and the clusters, we will neglect it for the remainder of the discussion in

this chapter.
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Figure 8.1: Bare ICI™ curves illustrating photoexcitation and avenues for prod-
uct formation. Direct dissociation in the A’ state produces I”-based fragments.
The solvent may bring about transitions to the ground electronic state where
recombination or dissociation can occur. The dashed arrows indicate other
possible pathways observed in the simulations involving recombination in the
A’ state and dissociation to form Cl— + I*.
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The product branching ratios for photodissociation of IC1™ (COs),, at
644 nm are shown in Fig. 8.2. The solvent effects on ICI™ photodissociation
are much larger than those observed in I, , particularly for small clusters. The
formation of caged products from I; photoexcitation is first observed at n = 6
[3], while recombined products are observed from dissociation of IC1~(COs);
at 644 nm—a “one-molecule” cage effect. When IC1™ is solvated by two or
more CO, molecules, a third product channel opens in which solvated Cl~ is
formed. The fraction of I”-based fragments formed drops dramatically with the
addition of the first several solvent molecules, reaching zero by n = 4. At 740
nm (not shown) the dropoff is even steeper—only 8% of the fragments from
IC17(COy)s are I7-based. The yield of ICl™-based products, i.e. the caging
fraction, peaks at about 75% for n = 5, but then gives way to Cl~ product
formation, which reaches nearly 100% by n = 10.

Two fundamental questions arise from these results: First, why is
caging so efficient for small cluster sizes? And second, why does dissociation
dominate at the larger cluster sizes? To answer these questions requires an
understanding of the mechanisms by which the products are formed, and in
particular which electronic states are involved and how the solvent couples
them to bring about nonadiabatic transitions. This chapter reports preliminary
results of an ongoing attempt to answer these questions and to explore the
interplay between charge flow and solvent dynamics in a heteronuclear solute

molecule.
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Figure 8.2: Experimentally observed product branching ratios from photodis-
sociation of IC1~(CO,), at 644 nm from Refs. 1, 2.



231
8.1 Cluster Structure

As we have seen in Chapters 5-8, the cluster configuration at the
instant of photoexcitation strongly influences the subsequent dynamics, espe-
cially for the clusters with less than a complete solvation shell. In I clusters
the first several solvent molecules pack around the waist of the anion, leading
to very efficient dissociation. Amar and Perera [4] noted the particular impor-
tance that a solvent molecule at the “cap” position, i.e. along the solute bond
axis, has in producing caging and recombination. They associated onset of
caging in Br; clusters with the appearance of minimum energy structures with
capping solvent molecules. Our simulations of I; in both argon and CO; clus-
ters support this role of a structure in influencing the onset of caging, although
other factors, such as the charge flow and the long-range interactions with the
solvent, are clearly also important in determining whether or not caging occurs.

Structural effects on caging are even more important in IC1~ than in
IS because the solute asymmetry results in tighter binding around the chlorine
end of the molecule. The size disparity between I~ and Cl~ and tighter binding
of CO; to Cl~ were illustrated in Chapter 3. The CI-C bond distance in
Cl=-CO, is 3.0 A, compared with a 3.65 A I-C separation in I7-CO,. The
binding energies for a single CO5 molecule in the two clusters are 350 meV and
212 meV respectively. The solvent molecules therefore cluster preferentially
around the chlorine end of the molecule, acting as an effective cage even when
only a few solvent molecules are present.

The effect of an asymmetric solvent structure around IClI~ may be
exaggerated by the kinematics of photodissociation. Because of the mass dis-

parity between I and Cl, the Cl atom receives about 75% of the kinetic energy
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released. Furthermore, the masses of Cl (35 amu) and COq (44 amu) are closely
matched, so that collisions with the CO4 solvent are very efficient at removing
kinetic energy from the dissociating Cl atoms.

We have characterized the structural features of IC1~(CO,), clusters
in the ground electronic state using a combination of optimized configurations
and equilibrated ensembles prepared by running molecular dynamics (MD)
trajectories. The ensembles have been constructed and the minimum energy
configurations determined by a three-step procedure. First, an ensemble of
40 configurations is generated at an approximate temperature of 120 K by
sampling a 200 ps MD trajectory at 5 ps intervals. This temperature is chosen
to be high enough that the solvent molecules are fluid and a wide of solvent
configurations is sampled, but low enough that evaporation of monomers does
not occur. The correct total energy at which to run the trajectory is determined
by running shorter trajectories of 5-50 ps duration at several different total
energies. Based on these trial runs, the total energy is then set by appropriate
scaling of the atomic velocities. A second ensemble with a target temperature
of 50 K is generated by cooling each member of the 120 K ensemble over a
period of 10 ps. The cooling is accomplished by scaling the velocities at each
time step by a small amount to remove kinetic energy. The total amount of
kinetic energy removed is simply NkAT, where N is the number of cluster
degrees of freedom (5n), k is the Boltzmann constant, and AT is the total
desired temperature change. The lower temperature is chosen so that the
clusters are effectively frozen, with the molecules making only small excursions
about local minima. The final step is to determine these local minima by the
Newton-Raphson optimization method described in Chapter 3.

The lowest energy structures determined by this simulated annealing
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process are shown in Fig. 8.3. Binding sites on the Cl end of the molecule
are strongly favored over those on the I end. As in the I;(COy), clusters,
the CO, molecules always orient themselves perpendicular to the surface of
the solute anion in order to maintain a favorable interaction with the negative
quadrupole moment. The CO, molecules pack tightly around the Cl end of
the molecule until all of the sites near Cl are filled—between 6 and 7 solvent
molecules. The energy gained for the addition of each CO5 molecule is plotted
in Fig. 8.4. The binding energy for each monomer added to the Cl end of the
molecule ranges from 260 to 290 meV. The binding energy at n = 7 is somewhat
lower, reflecting the additional crowding that must take place to fit a seventh
molecule around the CI half of IC1~. For n > 7, the monomers occupy sites
on the I end of the anion, where the binding energy is about 30% lower. As
the solvent shell fills, the binding energies increase somewhat because of the
favorable solvent-solvent interactions. The structure at n» = 14 indicates the
solvent shell should close at either n = 14 or n = 15, but simulations at larger
cluster sizes will be necessary to locate the closing more precisely.

The solvent asymmetry can be quantified using the solvent coordinate
defined in Chapter 7. This solvent coordinate, A®, is the energy required to
move a charge of —e from the Cl end to the I end for a fixed nuclear configura-
tion. Positive values favor charge on the Cl end, while negative values, which
are not observed in either the ground state ensembles or optimized structures,
favor charge on the I end. Values of the solvent coordinate for the minimum
energy structures and average values for the high and low temperature ensem-
bles are plotted as a function of cluster size in Fig. 8.5. The solvent coordinate
increases approximately linearly through about n = 6, peaking at n = 7 for the

minimum structures and low temperature ensemble and at n = 6 for the high
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Figure 8.3: Minimum energy structures of IC17(COs),, n =1-14. A CO,
molecule first occupies a site on the IC1™ bond axis at n = 4. In the structures
for n = 2 and 3 the CO5 molecules are not in a position to block the escape of
Cl as ICl~ dissociates.
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Figure 8.4: Sequential binding energies for minimum energy structures of
IC17(COs),. This quantity is defined as the amount of energy released by
adding the last monomer to the cluster, i.e. PE,, - PE,, 1, where PE is the po-
tential energy of the cluster. This quantity is always negative, so the absolute
value is plotted here.



236

temperature ensemble. The magnitude of the asymmetry falls as monomers
fill sites around the I end of the anion, but still remains large for the nearly
complete solvent shell at n = 14—around 800 meV. By comparison, the initial
solvent asymmetry in I; (CO3)16 is about 100 meV, while the peak asymmetry,
seen in I (COy)10, is only about 700 meV. The peak asymmetries in the IC1~
clusters are thus more than double what was seen in I;. The reason for the
much larger asymmetries observed in ICI™ is that the solvent molecules pack
much closer to the Cl atom than the I atom because of the smaller ionic radius.
The large values of the solvent coordinate simply confirm the well-known fact
that smaller charge distributions are better solvated than larger ones.

The persistence of the solvent asymmetry as the clusters are heated
demonstrates that temperature has little effect on the basic structural proper-
ties of the clusters. Temperature has a significant but relatively small effect
on AP for the most asymmetric clusters. As these asymmetric clusters are
heated, solvent molecules on the Cl end occasionally migrate onto the I end of
the anion. The mobility of the solvent molecules is limited as the solvation shell
fills, so that temperature has less effect on the solvent asymmetry at larger n.

Properties of the ensembles and the minima are summarized in Tables
8.1-8.3. The data confirm the earlier statement that for a broad range of
temperatures heating the clusters has relatively little influence on the basic
structural properties. The much smaller number of distinct minima that are
found for the n =1-7 clusters suggests that the cage around the Cl is much less
flexible than the cage around I. The Mulliken charge on the chlorine atom, gq,
indicates that IC1™ polarizes significantly in response to the solvent asymmetry.
gcr is —0.61 in bare IC17, while it attains a maximum value of about —0.74 at

n = 6 and 7, the most asymmetric cluster sizes. The degree of polarization is
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Figure 8.5: Solvent asymmetry as a function of cluster size for IC1™ (COsy),.
The solvent always favors charge at the Cl end of the molecule.
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Table 8.1: Average properties of the lower temperature IC1™ (COs),, ensembles
with standard deviations in parentheses.

n] T PE® AD 7o
(K) (meV) (meV) (au)

1]68(31) -241(6)  234(d3) -0.63(1)
2| 52(17)  -492(7)  494(62)  -0.65(1)
3 60(15) -742(10) 772(66) -0.68(1)
4]57(13)  -999(12) 1082(78)  -0.70(2)
5| 61(14) -1269(15) 1372(85) -0.72(2)
6 | 69(14) -1545(18) 1531(104) -0.74(2)
7| 73(16) -1745(23) 1562(104) -0.74(2)
8 | 67(12) -1919(19) 1438(176) -0.72(3)
10 | 65(13) -2272(29) 1189(148) -0.70(2)
12| 67(9) -2666(23)  979(187) -0.68(2)
14 | 57(9) -3104(26)  794(157) -0.66(1)

 Cluster potential energy not including IC1~ bond energy (1.010 eV).

comparable to that observed in I;, for the most asymmetric cluster sizes, but in
IC1~ the polarization remains sizeable even for clusters with a nearly complete
solvent, shell.

The properties of the minimum energy structures and the ensembles
have several consequences for the photodissociation dynamics. The pronounced
asymmetry of the small small cluster sizes is the major reason for the early
onset of caging. A minimum energy structure with COs in the cap position
first appears at n = 4, and, as we discuss below, this capping is the primary
reason for the large increase in caging at this cluster size in simulations of the
photodissociation dynamics. Structural features alone do not determine caging.
Even though the I atom receives about 25% of the kinetic energy release, no
solvent molecules stand in the way of I escaping in clusters with less than half
a solvent shell. Long-range interactions between the solvent molecules and

the escaping I atom, enhanced by residual charge or charge flow onto I, are
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Table 8.2: Average properties of the higher temperature ICI~ (CO,),, ensembles
with standard deviations in parentheses.

n T PE® Ad qc
(K) (meV) (meV) (au)

1] 139(48) -226(11) 248(60) -0.63(2)
92 | 111(34)  -457(14)  479(94)  -0.65(2)
3| 124(35) -694(23) 770(89)  -0.67(2)
4]121(28) -934(23)  992(142) -0.69(2)
5| 128(31) -1190(34) 1276(136) -0.71(2)
6 | 125(24) -1435(31) 1420(132) -0.73(2)
7| 118(25) -1603(38) 1391(137) -0.73(2)
8 | 120(25) -1769(45) 1282(172) -0.71(3)
10 | 122(25) -2093(54) 1104(181) -0.69(3)
12 | 122(14) -2446(37)  895(203) -0.67(3)
14 | 111(18) -2845(54)  839(209) -0.67(2)

 Cluster potential energy not including IC1~ bond energy (1.010 eV).

Table 8.3: Properties of lowest energy IC1~(CO,),, clusters.

n PE, PE, —-PE,_; PE,/n Ad # local

(meV)® (meV)® (meV)© (meV) minima
1 —258 —258 —258 204 1
2 =522 —263 —261 520 2
3 —798 —276 —266 751 3
4 —1075 =277 —269 1129 4
5 —1333 —278 -271 1391 4
6 —1646 —293 —274 1665 3
7 —1896 —250 —271 1796 9
8 —2091 —195 —261 1649 18
10 —2499 —204 —250 1385 35
12 —2916 —208 —243 1010 38
14 —3384 —234 —242 746 37

¢ Cluster potential energy not including ICI~ bond energy (1.010 eV).
b Sequential binding energy, i.e. energy gained by adding last CO..

¢ Average potential energy per COs.
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responsible for preventing I escape. A major difference between I; and IC1™
is the much larger magnitude of the solvent asymmetry prevalent in all of the
IC1~ structures. For all but the smallest clusters, the solvent asymmetry in the
ground state structures is larger than the asymptotic splittings among the bare
ion states, so that the B state asymptote, I* and Cl~, actually becomes lower
than the A’ state asymptote of I= and Cl. When the solvent asymmetry is
large enough, this reordering of the states causes the charge in the dissociating
molecule to localize on the Cl atom, producing I* and Cl~. As we will see

below, this profoundly affects the mechanisms by which products are formed.

8.2 Solvent Effects on the Electronic Absorption Spectrum

Nadal et al. [1] have measured the effect of clustering on the ICI~
electronic absorption in the red region of the spectrum. In IClI~(COy)4, the
only cluster size studied, they found a small red shift of approximately 10 nm in
the A" + X absorption band near 700 nm. This is equivalent to a differential
shift in the energies of the two states of about 25 meV, which is very small
considering that the total solvation energy for this cluster size is about 1 eV.
The maximum absolute cross section for the solvated ion, 5+ 2 x 10~®¥cm?, is
the same as the cross section for the bare ion to within the experimental error.

The small effect of solvation on the A’ +— X absorption band sug-
gests that the electronic structure of the anion is not severely perturbed near
the equilibrium ICI~™ bond distance. An important corollary is that for this
excitation energy, charge transfer to the solvent is probably not an important
effect. Although CO; is unstable [5], DeLuca and coworkers [6] have deter-

mined that (COs), clusters, where n =2-13, may have electron affinities as
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large as 2.2 eV. Because the electron affinity of ICl is about 2.5 eV [1], it is
conceivable that photoexcitation could produce charge transfer. One reason
that charge transfer is probably not observed, particularly near the equilib-
rium bond distance (R,), is that the solvent configuration heavily favors the
localized charge distribution on ICl™. For these solvent configurations, states
in which the charge is delocalized on a set of CO5 molecules or even localized
on a single COy molecule are probably stabilized by the solvent much less than
the ICI™ states, and are therefore far away in energy.

A second implication of the small red shift observed in the absorption
spectrum is that there is only a small change in the charge distribution between
the ground and excited states at R.. If there were a substantial flow of charge
onto the I atom from photoexcitation, one would expect a substantial blue
shift in the transition energy because the excited state would be less favorably
solvated. This suggests that at R, that charge distribution still favors the Cl
end of the anion.

We have calculated the absorption spectrum of IC1~(CO,), using a
semiclassical method similar to the one described in Chapter 3. For each
configuration in an ensemble, the solvent nuclei are held fixed and the solute
electronic spectrum is calculated using the modified reflection approximation
described by Heller [7]. The absorption cross section at frequency w from the

initial state ¢ to the final state f is given by

B |ig (gr)i(ar)|?, (8.1)

0iy(w) = 4n*aadw |V} (ar)

where V) is the upper state potential, gr is the classical turning point on

the upper state, and y,;f and 1); are the transition moments and ground state
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vibrational wave functions respectively. The ground state wave function is ap-
proximated by a harmonic oscillator wave function. The total spectrum of the
cluster is then computed as an average over the spectra for each configuration
in the ensemble.

The simulated n = 4 spectrum shown in Fig. 8.6 was calculated by
averaging over the lower temperature ensemble described in the previous sec-
tion. The spectra calculated from the higher temperature ensemble and the
lowest energy structure are nearly identical. As in the experiment, the A’ + X
band near 700 nm undergoes a small red shift, although the magnitude of the
shift is about 35 nm, or 90 meV, in contrast to the 25 meV experiment shift.
The absolute cross sections agree to within the experimental error. The UV
B + X band undergoes a small blue shift and diminishes somewhat in inten-
sity, while the a' +— X near 450 nm disappears altogether in the cluster. This
suggests that an experimental measurement of this band in the bare ion and
the cluster would provide an excellent test of the electronic structure model.

Although there is some disagreement in the magnitude of the A’ + X
band red shift, the simulated spectra support the conclusion that solvation does
not radically alter the anion electronic structure. In the simulation, the charge
distributions are nearly identical in the X and A’ states of the cluster, lending
credibility to the inference from the experimental spectra that there is little
charge transfer character to the transition. The charge distribution of the A’
state in the bare ion favors iodine, but in the cluster, where the Cl end is more
favorably solvated at the ground state equilibrium configuration, the A’ state
polarizes to favor the Cl atom. This tilting of the initial charge distribution in
the excited state towards Cl strongly affects the dynamics of photodissociation,

as we discuss below.
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Figure 8.6: Simulated absorption spectra for IC1™ (solid line) and IC1(COy)4
(dashed line) from the ground state. The absolute absorption cross section is
shown as a function of the wavelength for the three parallel transitions. The
perpendicular transitions are several orders of magnitude smaller in intensity.
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The magnitudes of the spectral shifts, however, cannot be interpreted
solely in terms of the charge transfer character of the transitions. While the
charge distributions in the X and A’ states are similar, the solute-solvent in-
teractions are on average about 60 meV stronger in the A’ state, which must
be due to slight differences in the distributed multipole charge distribution
that are not reflected by the Mulliken populations. The remainder of the 90
meV red shift observed in the simulations is due to changes in the internal
solute energy, or “self energy” [8, 9], the expectation value of the isolated so-
lute Hamiltonian (h¢ in the notation of Chapter 2). The self energy always
increases upon solvation because the polarized ground state wave function in-
cludes some contributions from the bare ion excited states. The self energy
of the excited states may increase or decrease depending on which states are
mixed in by polarization. In IC1~(COy), the self energy of the A’ state is about
10 meV larger than in the bare ion, but the internal energy of the ground state
increases by about 40 meV, so the self energy contributes about 30 meV to the
observed red shift.

This effect is even more pronounced in the B state, where only a
small blue shift is observed despite the fact that the charge distribution changes
dramatically upon excitation. The B state solute-solvent interactions are about
340 meV less favorable than in the ground state because a large portion of the
charge is shifted onto the I atom. At the same time, however, the internal
energy of the B state drops by about 240 meV upon solvation, so the total
blue shift is only about 50 meV. This interplay between the solvation energy
and the self energy makes it difficult to interpret observed shifts simply in
terms of charge transfer character. Detailed knowledge of the solute electronic

states is required to separate the contributions from charge transfer and solute
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polarization.

8.3 Photodissociation Dynamics

In order to investigate the dynamics of photodissociation in these clus-
ters, surface hopping trajectories were run from the photoexcited state using
the methods described in Chapter 4. For each cluster size studied, n = 24, 8,
and 10, 20 trajectories were run from starting configurations selected from the
lower temperature ensembles described above. This is a relatively small num-
ber of trajectories, so the goal of this preliminary investigation was to provide
a survey of the outcomes and mechanisms rather than to make close numerical
comparisons with the experimental results. The average starting temperature
of the ensembles was 50—60 K, which is lower than the temperatures used to
study photodissociation of I, (COy), clusters. This temperature was chosen
because the ensembles were already available from the structural study; there
is no reliable experimental estimate of the IC1~ cluster temperature. To start
each trajectory, the I-Cl bond length was adjusted to match the 644 nm ex-
perimental photoexcitation energy gap. Since this excitation energy lies well
within the A’ +— X band, the adjustment required was small, less than 0.1 A.
Trajectories were run for 50 ps or until the I-Cl bond length exceeded 60 A. A
2 fs step size was used in the integration of the trajectories, which resulted in
errors in the energy conservation of the order of 1 part in 103.

Table 8.4 shows the simulated photofragment distributions for each
of the cluster sizes studied. Four classes of charged products were observed:
[~-based fragments, Cl™-based fragments, recombined ICl-based fragments,

and solvent-separated ICl™-based fragments. Products are considered dissoci-
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Table 8.4: Product distribution from simulation of IC1~(COs,),, photodissocia-
tion at 644 nm.

Percentage by product channel

n I"-based (IC1")*-based Cl -based I*---Cl -based
2 80 20 0 0
3 3 20 75 0
4 0 50 50 0
) 0 85 15 0
8 0 5 40 95
10 0 15 40 45

ated when the I-C] bond length exceeds 15 A by the end of the trajectory.
Recombination was assumed if the I-Cl bond length was less than 4.2 A and
solvent separation was assumed if the I-Cl bond length exceeded 6 A. There is
thus a clear distinction between the products which are recombined and those
which are solvent-separated.

Nonadiabatic relaxation to the ground electronic state of IC1™ is ob-
served in only one of the 120 trajectories run for all the cluster sizes. The
dynamics observed for the 50 ps trajectories is almost uniformly adiabatic, al-
though a wide range of products results because the solvent strongly mixes the
bare ion electronic states.

The production of I™-based fragments and Cl atoms is observed only
in the two smallest cluster sizes studied. At n = 2 it is the dominant product
channel. This product corresponds to direct dissociation on an adiabatic state
with similar character to that of the bare ion A’ state, where the charge localizes
onto the I atom. At 50 ps all of the solvent molecules remain clustered to the
I7, but sufficient internal energy remains in the fragment to evaporate 1 or

2 monomers. This agrees with the experimental results, shown in Fig. 8.7,
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where on average 1 solvent molecule is evaporated from the I~ product from
IC1" (COgq)s. As in the experiment, this channel disappears rapidly between
n =2 and 4.

The recombined IC1™-based fragments, which are denoted (IC17)* in
Table 8.4, result from recombination in the approximately 200 meV well on
the A’ state. This channel follows the same basic trend observed in the ex-
periment for the ICI~-based products: a small amount is observed for n = 2,
followed by a rapid rise to a maximum around n = 5, and a sharp decline at
larger cluster sizes out to n = 12, where the product disappears. The excited
(IC17)* fragments observed in the simulations, however, have enough internal
energy to evaporate at most a few monomers, even at the largest cluster sizes,
while the experimental fragments exhibit a monotonic increase in the number
of monomers lost in the range over which they are observed, peaking at nearly
7 for n = 10. It is therefore likely that the experimental IC1™ fragments even-
tually undergo electronic relaxation to the ground state, which releases a large
amount of energy that goes into solvent evaporation. At this time there is no
experimental information about the time scale on which this electronic relax-

ation occurs. The mechanisms by which (ICI1™)*

might undergo nonadiabatic
relaxation are discussed below.

In the simulations the formation of Cl™-based products is nearly al-
ways accompanied by the formation of spin-orbit excited I*. Cl~ formation
becomes the dominant dissociation channel at n = 3 , which is one cluster
size sooner than in the experiments. As in the experiments, its distribution
with cluster size is bimodal, with a minimum around n = 5, where caging of

ICI™ is strongest. At the larger cluster sizes, increased production of Cl~ is ac-

companied by the appearance of solvent-separated pairs, denoted Cl~---I*, in
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Figure 8.7: Average number of solvent molecules lost for each experimental
product channel following photodissociation of IC1~(CO,), at 644 nm from
Ref. 2. Each channel spans a range of 2-3 solvent molecules. Experimental
products are detected at 5-10 us after photoexcitation.
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which CO3; molecules strongly solvate the Cl™ ion while the I* remains loosely
bound to the outside of the cluster. At n = 8 and 10, where these solvent-
separated pairs are observed, direct dissociation never takes place. Following
initial caging of IC1™ by the solvent, C1~ is formed when the solvent molecules
pinch between the I and Cl, localizing the charge on Cl and forming I*. Dissoci-
ation then occurs by evaporation of the I* from the outside of the solvated CI~
fragment. The solvent-separated Cl~ ---I* fragments are thus likely to yield
Cl™-based fragments but have not yet done so by 50 ps, when the trajectories
are stopped.

The small number of monomers lost from the Cl™-based fragments at
all the cluster sizes at which they are observed agrees well with the experimen-
tal results shown in Fig. 8.7. For n = 4 all of the Cl™-based fragments produced
at 50 ps are solvated by four monomers, but sufficient internal energy remains
in all of the fragments to evaporate an additional solvent molecule. This de-
termination is made by comparing the total internal energy of the fragment
(subtracting the center-of-mass kinetic energy) with the binding energies shown
in Tables 8.5 and 8.6, which are included here for reference.

Analysis of the preliminary results suggests a new mechanism for
product formation in ICI~(CO,),, photodissociation and provides explanations

of several unusual trends in the size dependence of the photofragments..

8.3.1 High caging efficiency

The asymmetric solvent structure around IC1™ is expected to strongly
enhance caging at the smaller cluster sizes. Because the ICl™-based fragments
produced in the simulations are in an excited state, it is not clear what effect

the large amount of energy released by electronic relaxation will have on the
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Table 8.5: Properties of lowest energy Cl1~(COs),, clusters.

n Potential Energy . Binding Energy . Binding Energy
(meV) (meV) (meV)
1 —350 —350 —350
2 —709 —359 —355
3 —1083 —374 —361
4 —1440 —357 —360
5 —1792 —352 —358
6 —2134 —342 —356
7 —2476 —342 —354
8* —2825 —349 —353
9 —2994 —169 —-333

* First solvation shell complete.

Table 8.6: Properties of lowest energy I~ (COs),, clusters.

n Potential Energy Seq. Binding Energy Avg. Binding Energy
(meV) (meV) (meV)
1 —214 —214 —214
2 —463 —249 —232
3 —740 —277 —247
4 —1000 —260 —250
5 —1257 —257 —251
6 —1524 —267 —254
7 —1786 —262 —255
8 —2067 —281 —258
9 —2324 —257 —258
10 —2618 —294 —262
11 —2872 —254 —261
127 —3179 —307 —265

* First solvation shell complete.
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observed caging efficiencies. Nevertheless, caging in the excited state is proba-
bly the precursor to the formation of caged ground state products, and several
basic mechanisms for this caging can be identified.

At the smallest cluster sizes, n = 2 and 3, the small amount of caging
results primarily from strong long-range interactions with the solvent and be-
tween the solute atoms. Structural caging, where a solvent molecule physically
blocks the dissociation of the solute atoms, is not observed in these cluster
sizes. The solvent molecules initially occupy sites around the Cl end of the
molecule, but off the I-Cl bond axis. As the solute dissociates, charge localizes
onto the I atom, and the solvent molecules that are initially near the Cl atom
are pulled back towards the nascent ion. Usually, the Cl atom escapes, but
on occasion it is recaptured by a nearby CO, molecule that is being pulled
toward 1™, as shown in Fig. 8.8. Although this is not a dominant mechanism
for product formation at any cluster size, this long range recombination, where
the solvent molecules act as a rope that pulls the dissociating molecule back
together, is occasionally observed in larger clusters as well.

Structural caging is the dominant caging mechanism for n > 4. The
presence of a capping molecule in IC17(COy),, clusters is the critical factor in
determining whether a particular trajectory initially dissociates or recombines.
(Trajectories that initially recombine may later dissociate for other reasons
discussed below.) To measure the correlation between capping and caging,
we characterized all of the initial configurations for the n = 4 trajectories as
capped or uncapped by visual inspection of the structure. 8 structures were
initially capped and 12 uncapped. As shown in Fig. 8.9, the capped trajectories
reach a maximum initial bond length of under 4 A in the first 200 fs after pho-

toexcitation, while in the same period the uncapped trajectories reach about
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Figure 8.8: Long-range recombination mechanism in ICl7(COg)y. The CO,
molecules are attracted to the charge that has localized in the I atom. One of
the COy’s is also near the departing CI atom and pulls it back toward I~.
5.4 A. Of the 12 initially uncapped structures 9 dissociate directly producing
Cl™ and I*, while the remaining three eventually recombine by the long-range
solvent mechanism described above. Of the 8 initially capped structures, only
one dissociates, apparently the result of the solvent separation mechanism dis-
cussed below. For n = 5, 18 of 20 initial configurations are capped, and all
but one of these results in caged (IC17)* fragments at 50 ps. In larger clusters,
all of the configurations are capped, and direct dissociation is never observed.
The onset of capping at n = 4 thus explains the rapid increase in caging that
is observed at n =4 and 5.

There are two primary reasons that capping is so effective at caging
the dissociating IC1~. The first is that the match between the Cl and CO,
masses provides efficient energy transfer during the head-on collisions that

occur when a COq occupies the cap position. As we have noted, the Cl atom
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Figure 8.9: I-Cl bond length versus time for simulated photodissociation of
ICI7(COg)4. The thick solid line shows the average over all 8 trajectories
starting from capped configurations, while the thick dashed line shows the
average for the 12 uncapped trajectories. The thin lines show the 3 trajectories
where the initially uncapped configurations produced recombined products and
the single trajectory where an intially caged configuration dissociated.
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gets 75% of the initial kinetic energy released by photoexcitation. But what
stops the I atom? The collision with the cap atom occurs at a very short I-Cl
bond length, about 3.5 A, before the I-Cl bond is broken and before charge
has localized onto the Cl atom—as it always does for n > 4. The second reason
capping is so effective, then, is that after the collision with the cap molecule
stops the Cl atom, there a strong restoring force pulling the partially charged

I atom back towards the cluster, and direct dissociation cannot occur.

8.3.2 Production of CI™ + I*

A surprising result of the simulations is that Cl -based fragments
are always accompanied by production of I*. Thus Cl™-based products are
formed adiabatically, rather than by solvent-induced electronic relaxation as
suggested previously [1, 2]. Cl= + I* becomes energetically accessible at a
small cluster size (n = 3 in the simulation) because of the large difference
in the solvation energy of I~ and Cl~ (see Tables 8.5 and 8.6). For clusters
larger than about n = 4, the I~ fragment channel becomes closed, so that only
Cl™-based products can be formed by dissociation.

The preference for C1~ production at n = 4, however, is a result of the
initial solvent configuration rather than the energetics. At n =4 I~ fragments
are lower in energy than the observed Cl~ fragments, but because the initial
solvent configuration so heavily favors the Cl end, the charge localizes in the
dissociative trajectories very rapidly onto the Cl atom, as shown in Fig. 8.10.
Even in the trajectories that recombine, the excited state charge distribution
and the solvent configuration continue to favor the Cl end. As discussed below,
this is a primary reason that nonadiabatic relaxation to the ground electronic

state is not observed in the caged trajectories.
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Figure 8.10: Charge localization and solvent coordinate versus time for simu-
lated photodissociation of ICI~(CO3)4. The solid line shows averages for the
caged trajectories the dashed line shows averages for the 12 uncapped trajec-
tories. Both the charge distribution and the solvent configuration favor the Cl
atom.
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Nadal et al. [1, 2] have suggested that both the ICl™ and the Cl~
products seen in the experiments are formed following nonadiabatic relaxation
to the ground electronic state. As noted above, the large number of monomers
lost from the ICI™-based products implies that caged IC1™ relaxes to the ground
electronic state by the time the products are detected at several us after pho-
toexcitation. The number of monomers lost from the Cl™-based fragments
is much smaller than the number lost from the ICl™-based fragments, and
this difference grows with increasing cluster size. The simulations show that
production of the experimentally observed Cl™-based products is energetically
allowed when I* is also produced. To produce the same Cl~ fragments with
ground state I atom would require dissipation of a minimum of 700 meV addi-
tional energy. At n = 4, for example, there are two fragments, one CO, and I,
available to carry away the excess energy to produce C1~(COs)s. If Cl™-based
products resulted from nonadiabatic relaxation to the ground state, fragments
with 2 or 3 additional monomers evaporated would be energetically accessible,
but are not observed. It is therefore probable for energetic reasons alone that
the Cl~-based product channel involves production of I* at all cluster sizes.
Thus, while the caged fragments result from a nonadiabatic process (albeit on
an as yet undetermined time scale), the Cl™-based fragments are produced by

a purely adiabatic mechanism.

8.3.3 Solvent-induced dissociation

A major finding of this preliminary study is that Cl -based frag-
ments and I* can be formed by solvent-induced dissociation of initially caged
molecules. This mechanism is observed in isolated cases for n = 4 and 5, but

dominates the n = 8 and 10 trajectories. Once a layer of solvent pushes be-
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tween Cl~ and I*, there is little to hold the I* to the outside of the cluster—the
binding energy with a COj is only about 30 meV. The rate at which solvent-
induced dissociation occurs appears to to increase rapidly with cluster size,
which may explain why CI~ formation becomes the dominant channel in the
larger clusters. If the rate of nonadiabatic relaxation to the ground state from
caged IC1™ in the excited state remains constant or decreases, the probability

of solvent-induced dissociation will increase.

8.3.4 Why is nonadiabatic relaxation of (IC1 )* not observed in the

simulations?

A problematic aspect of the current simulation results is that elec-
tronic relaxation of caged (ICI7)* is not observed. It is therefore difficult to
determine whether a particular trajectory that is caged in the excited state
will dissociate adiabatically to form Cl~-based products or relax nonadiabati-
cally to produce ground state ICI~. Nonadiabatic relaxation takes place only
when the excited state comes into resonance with a lower-lying state. Coupling
events are occasionally observed on caged trajectories when the solvent reorga-
nizes to favor the I end of the solute. In this solvent configuration, the charge
localizes on the I atom, which lowers the energy of the excited state. The two
lower lying states, in which the charge favors the Cl atom increase in energy,
so that with a large enough solvent asymmetry, they come into resonance with
the excited state. The resonance events in the simulations, however, are too
short-lived to produce substantial transition probabilities. Also as the cluster
size increases, the likelihood of the solvent rearranging to favor the I atom
seems to diminish. It is possible that the simulation results are correct, and

the rate of nonadiabatic relaxation is just too small to be observed in a 50 ps
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simulation. It is also possible, however, that the transition rate is suppressed
by one of several factors that should be investigated.

The first is the depth and geometry of the excited state potential
well. The caged trajectories rarely make excursions exceeding 4.5 A in the
I-Cl separation, largely because R, on the scaled potential is 3.7 A. For the
unscaled potential the well depth was 30% smaller and R, was 4.4 A. Since
the scaling method is arbitrary, this difference reflects the uncertainty in the
excited state potential. The bond length and well depth may have a significant
effect on the nonadiabatic transition rate because the resonances needed for
transitions to occur are easier to produce at larger separations, where the
bonding interactions are smaller.

The treatment of the solvent molecules as rigid may also suppress
nonadiabatic transitions if coupling to solvent vibrations is an important mech-
anism for nonadiabatic coupling, as has been observed in other systems. [10].
Both the bend and asymmetric stretch in COy carry strong transition dipole
moments and might serve as accepting modes for electronic-vibrational energy
transfer.

Finally, the model overestimates the electron affinity difference be-
tween I and Cl, which shifts the A’ state asymptote up by about 50 meV (see
Chapter 3), making it more difficult for the solvent to couple the state with
the ones below it. While this is small in energetic terms, reducing the energy
gap by 50 meV at certain points along a trajectory could have a large effect

on nonadiabatic coupling rates.
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8.3.5 Marcus picture of the charge flow and solvation dynamics

Nadal et al. [1, 2] have proposed a simple electron transfer mechanism
to explain how ICl™ returns to the ground electronic state in clusters. This
mechanism is essentially the same as the one used to explain nonadiabatic
relaxation in I; in Chapter 7, but applied to an asymmetric solute molecule. In
this picture, photoexcitation causes the charge to localize onto the I atom as the
molecule dissociates. This charge localization drives the solvent to rearrange to
favor the I end of the molecule. The solvent reorganization lowers the energy of
the excited state at the expense of the ground state, which increases in energy.
At some time late in the reorganization process, when the solvent substantially
favors the I end, the ground and excited states come into resonance, and an
electron transfer between I and CI can occur. The states come into resonance
only when the solvent favors the I end instead of at the point of equal solvation,
as was the case for I, , because of the difference in the energy of solvating the
two ends of the molecule.

As we have seen, however, asymmetric solvation polarizes the charge
distribution of the excited state in favor of the Cl end of the anion. At the
smallest cluster sizes, the charge can still localize onto the I atom immediately
after photoexcitation, which usually produces dissociated I”-based fragments.
For clusters as small as n = 3, however, the excited state charge distribution
begins to favor the Cl atom, primarily because of mixing with the bare ion B
state, which dissociates to form Cl~ + I*. Cl~-based products are now formed
by direct dissociation because the charge localizes on the Cl atom before the
solvent can rearrange to favor the I end. Asshown in Fig. 8.12, the polarization

of ICI™ in the excited state produces a potential energy well for solvent con-
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clusters via electron transfer.
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figurations favoring the Cl end. The crossing of the CI™ + I* and the Cl + I
curves creates a barrier to adiabatic solvent arrangement in the photoexcited
state. Because the solvation energy is greater for the Cl end of the solute than
the I end, the energy of the well on the ClI side decreases relative to the well on
the I side as cluster size increases. Thus, the barrier to solvent rearrangement
may be expected to increase with cluster size.

Figure 8.10 showed that for n = 4 the charge distribution in the caged
trajectories favors the Cl end of the molecule. This suggests that there is a real
barrier to solvent rearrangement about the I end of the solute in the excited
state. In the majority of caged trajectories for n = 4, the solvent coordinate
remains positive throughout the trajectory. Solvent rearrangement to favor
I does occur in some trajectories, suggesting that there is sufficient energy
to overcome the barrier. The frequency of solvent rearrangement appears to
decrease with cluster size which suggests that the barrier to rearrangement in-
creases. In the trajectories where rearrangement is observed, solvation favoring
the I atom persists for many picoseconds, making it likely that the solvated I
minimum is reached. No crossing with the ground state is observed during the
solvent, rearrangement, however, which presents the intriguing possibility that
the crossing with the ground electronic state occurs in the “Marcus inverted”
regime, as shown in Fig. 8.12. Further study is clearly required to support this
interpretation.

The barrier to solvent rearrangement in the excited state provides a
possible explanation for the disappearance of electronically relaxed IC1~ prod-
ucts in the photofragment distributions at large cluster sizes. We have already
seen that the rate of solvent-induced dissociation increases with cluster size,

while the barrier to rearrangement seems to slow down the rate of electronic
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ters involving the B state.
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relaxation to the ground state. Therefore, as cluster size increases, solvent-
induced dissociation becomes the dominant mechanism for product formation.
Until nonadiabatic relaxation is directly observed in the simulations, this pic-
ture will remain speculative. This explanation is, however, consistent with all

of the known facts.

8.4 Conclusions

At the beginning of this chapter, questions were posed about the
two unusual features of photodissociation in IC17(CO,),, clusters: the onset
of caging at relatively small cluster sizes, and the disappearance of caging at
large cluster sizes.

We have found that caging depends largely on a solvent molecule
occupying the cap site on the Cl end of the molecule prior to photoexcitation.
The CO, molecules strongly prefer to solvate the Cl end of the anion because
they can get nearer to the excess charge. As a result, capped configurations
dominate the cluster structures starting at about n = 4, where caging makes
a large jump in both the experiments and the simulations. Caging via long
range attractions where the solvent essentially serves as a rope between the
dissociating solute atoms is less frequently observed, but does result in some
caging at event the smallest cluster size studied, n = 2.

A perhaps more important finding is that all of the Cl™-based prod-
ucts in the simulation are accompanied by the formation of spin-orbit excited
I*. Analysis of the fragment internal energies supports the contention that I*
is also formed in the experiments. The production of Cl™-based fragments in

IC1~ photodissociation occurs adiabatically and does not indicate electronic
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relaxation.

The caged fragments in the simulations do not undergo electronic
relaxation to the ground state within the 50 ps spanned by the simulations.
Further study is required to determine whether the relaxation is intrinsically
long or whether some deficiency in the model is responsible. A time-resolved
experimental study of the photodissociation would obviously be of great inter-
est.

At the largest cluster sizes studied, n = 8 and 10, solvent-induced
dissociation of solute molecules that initially recombine in the excited state
becomes the primary mechanism of product formation. Solvent separation in
the excited state adiabatically produces Cl~ and I*, which evaporates rela-
tively quickly from the cluster because of its weak interactions with the solvent
molecules.

A simple picture of the charge flow and solvent dynamics based on
the Marcus theory of electron transfer [11, 12] illustrates that for all but the
smallest cluster sizes there is a barrier to solvent reorganization in the excited
state that impedes electronic relaxation of the caged fragments. This barrier
appears to increase with cluster size and may, along with the observation of
facile solvent-induced dissociation, explain the observation of only uncaged C1~

fragments for n > 10.
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