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One reason that free energy difference calculations are notoriously difficult in molecular systems is
due to insufficient conformational overlap, or similarity, between the two states or systems of
interest. The degree of overlap is irrelevant, however, if the absolute free energy of each state can
be computed. We present a method for calculating the absolute free energy that employs a simple
construction of an exactly computable reference system which possesses high overlap with the state
of interest. The approach requires only a physical ensemble of conformations generated via
simulation and an auxiliary calculation of approximately equal central-processing-unit cost.
Moreover, the calculations can converge to the correct free energy value even when the physical
ensemble is incomplete or improperly distributed. As a “proof of principle,” we use the approach to
correctly predict free energies for test systems where the absolute values can be calculated exactly
and also to predict the conformational equilibrium for leucine dipeptide in implicit solvent. © 2006
American Institute of Physics. �DOI: 10.1063/1.2174008�
I. INTRODUCTION

Knowledge of the free energy for two different states or
systems of interest allows the calculation of solubilities,1,2

determines binding affinities of ligands to proteins,3,4 and
determines conformational equilibria �e.g., Ref. 5�. Free en-
ergy differences ��F� therefore have potential application in
structure-based drug design where current methods rely on
ad hoc protocols to estimate binding affinities.6,7

Poor “overlap,” the lack of configurational similarity be-
tween the two states or systems of interest, is a key cause of
computational expense and error in �F calculations. The
most common approach to improve overlap in free energy
calculations �used in thermodynamic integration and free en-
ergy perturbation� is to simulate the system at multiple hy-
brid, or intermediate stages �e.g., Refs. 8–12�. However, the
simulation of intermediate stages greatly increases the com-
putational cost of the �F calculation.

Here, we address the overlap problem by calculating the
absolute free energy for each of the end states, thus avoiding
the need for any configurational overlap. Our method relies
on the calculation of the free energy difference between a
reference system �where the exact free energy can be calcu-
lated, either analytically or numerically� and the system of
interest.

Such use of a reference system with a computable free
energy has been used successfully in solids, where the refer-
ence system is generally a harmonic or Einstein solid,13,14

and liquid systems, where the reference system is usually an
ideal gas.15,16 The scheme has also been applied to molecular
systems by Stoessel and Nowak, using a harmonic solid in
Cartesian coordinates as a reference system.17
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Other approaches to calculate the absolute free energies
of molecules have been developed. Meirovitch and co-
workers calculated absolute free energies for peptides in
vacuum, for liquid argon, and water using the hypothetical
scanning method.18,19 Computational cost has thus far lim-
ited the approach to peptides with 60 degrees of freedom.20

The “mining minima” approach, developed by Gilson and
co-workers, estimates the absolute free energy of complex
molecules by attempting to enumerate the low-energy con-
formations and estimating the contribution to the configura-
tional integral for each.21,22 Anharmonic effects can be
included.23 The mining minima method can, in principle, in-
clude potential correlations between the torsions and bond
angles or lengths, and uses an approximate method to com-
pute local partition functions. Other investigators have esti-
mated absolute free energies for molecules using harmonic
or quasiharmonic approximations;23–25 however, as discussed
in Refs. 23 and 24, local minima can deviate substantially
from a parabolic shape.

We introduce, apparently for the first time, a reference
system which is constructed to have high overlap with fairly
general molecular systems. The approach can make use of
either internal or Cartesian coordinates. For biomolecules,
using internal coordinates greatly enhances the accuracy of
the method since internal coordinates are tailored to the de-
scription of conformations. Furthermore, all degrees of free-
dom and their correlations are explicitly included in the
method.

Our method differs in several ways from the important
study of Stoessel and Nowak:17 �i� we use internal coordi-
nates for molecules which are key for optimizing the overlap
between the reference system and the system of interest; �ii�
we may use a nearly arbitrary reference potential because
only a numerical reference free energy value is needed, not

an analytic value; and �iii� there is no need, in cases we have

© 2006 American Institute of Physics05-1
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studied, to use multistage methodology to find the desired
free energy due to the overlap built into the reference system.

We consider this report a “proof of principle” for our
reference system method. After introducing the method, it is
tested on single- and double-well two-dimensional systems
and on a methane molecule where absolute free energy esti-
mates can be compared to exact values. The method is then
used to compute the absolute free energy of the alpha and
beta conformations for leucine dipeptide �ACE-�leu�2-NME�
in implicit solvent, using all 115 degrees of freedom, cor-
rectly calculating the free energy difference �Falpha→beta. Ex-
tensions of the method to larger systems are then discussed.

II. REFERENCE SYSTEM METHOD

A. The fundamental relations

The absolute free energy of the system of interest
�“phys” for physical� is defined using the partition function
Zphys,

Fphys = − kBT ln Zphys

= − kBT ln�� dxe−��Uphys�x�+Kphys�x��� , �1�

where T is the system temperature, �=1/kBT, Uphys and Kphys

are, respectively, the physical potential energy �i.e., simula-
tion force field� and the kinetic energy, and x represents the
full set of configurational coordinates �internal or Cartesian�.
The kinetic energy term can be integrated exactly to obtain26

Zphys = � 1

h3N

8�2

�Co�
i=1

N

�2�kBTmi�3/2� � dxe−�Uphys�x�, �2�

where mi is the mass of atom i, h is Planck’s constant, Co is
the standard concentration, � is the symmetry number,22 N is
the number of particles in the system, and the integral is
defined to be the configurational partition function. For the
method used in this study the absolute free energy of the
system of interest is calculated using a reference system
�“ref”�, and the following relationships are used:

Zphys = Zref

Zphys

Zref
,

�3�
Fphys = Fref + �Fref→phys,

where Fref is the trivially computable free energy of the ref-
erence system and �Fref→phys is the free energy difference
between the reference and physical system which can be cal-
culated using standard techniques.

For this report, we include estimates of the configura-
tional integral only, i.e., the leading constant factor in square
brackets in Eq. �2� is not included in our results. Ignoring the
constant is not a limitation since, for the conformational free
energies studied here, the term cancels for free energy differ-
ences.

B. The reference energy and its normalization

The trivial identities of Eq. �3� suggest that arbitrary

reference systems can be used in our approach. To be con-
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crete and anticipate the procedure used, our discussion below
will assume that a finite-length simulation of the system of
interest has been performed—from which histograms of the
coordinates have been generated. For the molecular systems
studied in this report, ordinary Langevin dynamics simula-
tions are performed using standard force fields. The refer-
ence potential energy can be constructed from a wide variety
of histograms, as discussed below. Denoting the computed
histograms over all coordinates as P�x�, we define

Uref�x� 	 − kBT ln P�x� , �4�

where P�x� is the normalized probability of a particular con-
figuration corresponding to a set of histogram bins �see Fig.
1�. For example, if all coordinates are binned as independent,
then

P�x� = �
i=1

Ncoords

Pi�xi� , �5�

where Pi�xi� is the binned probability distribution �histo-
gram� for the ith coordinate and there are Ncoords degrees of
freedom in the system. If all coordinates are binned as pair-
wise correlated, then

P�x� = �

i,j�

Pij�xi,xj� , �6�

where 
i , j� is a set of pairs in which each coordinate occurs
exactly once and Pij�xi ,xj� is the probability for two particu-
lar coordinate values from the two-dimensional histogram
for these coordinates. It is also possible to use an arbitrary
combination of independent and correlated coordinates—so
long as each coordinate occurs in only one P factor.

We emphasize that the final computed free energy values
include all correlations embodied in the true potential Uphys.
This is true regardless of whether or how coordinates are
correlated in the reference potential.

A schematic of how Uref is computed for a one-
coordinate system is shown in Fig. 1. The coordinate histo-
gram is first determined �solid bars� using a simulation tra-

FIG. 1. Depiction of how the reference potential energy Uref is calculated
for a one-coordinate system. First the coordinate is binned, creating a his-
togram P �solid bars� populated according to a simulation. Then Eq. �4� is
used to calculate reference energies for each coordinate bin �dashed bars�. A
hypothetical physical potential is shown as a dotted curve for comparison to
Uref. For a multicoordinate system Uref would be the sum of the single-
coordinate reference potential energies.
jectory, then Eq. �4� is used to calculate Uref �dashed bars�. A
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possible physical potential is also included �dotted line� for
comparison to Uref. For a system containing many degrees of
freedom, the process is carried out for all coordinates, based
on Eqs. �5� and �6� or another correlation scheme. Uref is the
sum of all the appropriate terms, consistent with Eq. �4� and
the binning choice.

The free energy of the reference system can now be
calculated via the reference partition function

Zref =� dxe−�Uref�x� =� dxP�x� . �7�

In practice, we normalize the histogram for each coordinate
to 1 independently by summing over all histogram bins. So,
for a particular bond length r1, that is binned as independent,
we account for the Jacobian factor �see Eq. �11�� by defining
�=r1

3 /3, and then

Z� =� d�P��� = �
Nbin

��P��� = 1, �8�

where �� is the histogram bin size and Nbin is the number of
bins in the r1 histogram. �Binning choices are discussed be-
low.� Similar relationships are used for all coordinates. Thus
the reference free energy Fref=0 and Eq. �3� becomes

Fphys = �Fref→phys �Fref 	 0� . �9�

C. Using the physical and reference ensembles

With the reference potential energy Uref defined in Eq.
�4� and the physical potential energy Uphys given by the force
field, which may include implicit solvation energies,
Boltzmann-distributed snapshots from both the reference and
physical systems can be utilized to calculate Fphys

=�Fref→phys. Here, we simply use free energy perturbation8

from the reference to the physical systems,

Fphys = − kBT ln
e−��Uphys−Uref��ref

� − kBT ln� 1

Nref
�
i=1

Nref

e−��Uphys�xi�−Uref�xi��� , �10�

where Nref is the number of structures xi in the reference
ensemble, the “�” symbol denotes a computational estimate,
and 
¯�ref represents a canonical average using structures
from the reference ensemble only. It is important to note that,
while other choices for computing Fphys are possible, such as
Bennett’s method,5,27–31 Eq. �10� is the only choice which
relies solely on configurations drawn from the reference en-
semble which are, by construction, sampled canonically and
without dynamical trapping. We also note that “unidirec-
tional” estimates like that of Eq. �10� have been analyzed
extensively �e.g., Refs. 32 and 33� and may be amenable to
error-reduction techniques;34,35 however, we have applied the
perturbation approach here to keep our initial analysis as
straightforward as possible. Staged free energy methods such
as thermodynamic integration36 and adaptive integration37
may also be used.
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D. The physical ensemble and construction
of the reference system

The method used in this report relies on simple histo-
grams for all degrees of freedom �in principle, with internal
or Cartesian coordinates� based on a “physical ensemble” of
conformations generated via molecular dynamics, Monte
Carlo, or other sampling scheme. The histograms define a
reference system with a free energy that is trivially comput-
able, as described in Sec. II B. We emphasize that an analyti-
cal solution need not be available; a precise numerical evalu-
ation is more than adequate. A well-sampled ensemble of
reference system configurations is then readily generated and
used to compute the free energy difference via Eq. �10�.

The first step in our approach to constructing the refer-
ence system is to generate a physical ensemble �i.e., a trajec-
tory� by simulating the system of interest using standard mo-
lecular dynamics, Monte Carlo, or other sampling
techniques. The trajectory produced by the simulation is used
to generate histograms for all coordinates as described be-
low. In creating histograms, note that constrained coordi-
nates, such as bond lengths involving hydrogens constrained
by RATTLE,38 need not be binned since these coordinates do
not change between configurations. Such coordinate con-
straints are not required in the method, however.

If internal coordinates are used �such as for the mol-
ecules in this study�, care must be taken to account for the
Jacobian factors. Using internal coordinates with bond
lengths r, bond angles �, and dihedrals �, the volume ele-
ment in the configurational integral of Eq. �2� is given by23

dx = �
i=1

N−1

ri
2 dri�

i=1

N−2

sin �i d�i�
i=1

N−3

d�i

= �
i=1

N−1

d�ri
3/3��

i=1

N−2

d�− cos �i��
i=1

N−3

d�i, �11�

where N is the number of atoms in the system. Thus, when
using internal coordinates, the simplest strategy to account
for the Jacobian is to bin according to a set of rules: bond
lengths are binned according to r3 /3, bond angles are binned
according to cos �, and dihedrals are binned according to �
�i.e., the same as Cartesian coordinates�.

E. Generation of the reference ensemble

Once the histograms are constructed and populated using
the physical ensemble, the reference ensemble is generated.
To generate a single reference structure, for each coordinate,
choose a histogram bin according to the probability associ-
ated with that bin. Then a coordinate value is chosen at ran-
dom uniformly within the bin according the Jacobian factor
in Eq. �11�—e.g., for a bond length r, one chooses uniformly
in the variable �r3 /3�. The process is repeated for every de-
gree of freedom in the system. By repeating the entire pro-
cedure, one can generate as many reference structures as

desired �i.e., the reference ensemble�.
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F. Summary of the reference system method

In summary, the method is implemented by first con-
structing properly normalized histograms for all internal �or
Cartesian� coordinates based on a physical ensemble of
structures. An ensemble of reference structures is then cho-
sen at random from the histograms. The reference energy
�Uref of Eq. �4�� and physical energy �Uphys from the force
field� must be calculated for each structure in the reference
ensemble. Finally, Eq. �10� is used to calculate the desired
absolute free energy of the system of interest.

The central-processing-unit �CPU� cost of the method,
above that of the initial “physical” trajectory, is one physical
energy evaluation for each of the Nref reference structures,
plus the less expensive cost of generating reference struc-
tures.

III. RESULTS

To test the effectiveness of the reference system method
we first estimated the absolute free energy for three test sys-
tems where the free energy is known exactly. We chose the
two-dimensional potentials from Ref. 39 and a methane mol-
ecule in vacuum. Finally, we used the method to estimate the
absolute free energies of the alpha and beta conformations of
the 50-atom leucine dipeptide �ACE-�leu�2-NME� and com-
pared the free energy difference obtained via our method
with an independent estimate. In all cases, the free energy
estimate computed by our approach is in excellent agreement
with independent results.

A. Simple test systems

We first studied the two-dimensional single- and double-
well potentials from Ref. 39,

Uphys
single�x,y� = �x + 2�2 + y2,

�12�

Uphys
double�x,y� =

1

10

��x − 1�2 − y2�2 + 10�x2 − 5�2

+ �x + y�4 + �x − y�4� .

Table I shows the excellent agreement between the ref-
erence system estimates and the exact free energies �obtained
analytically� for the two-dimensional potentials used in this

TABLE I. Absolute free energy estimates obtained using our reference sys-
tem approach for cases where the absolute free energy can be determined
exactly. In all cases, the estimate is in excellent agreement with the exact
free energy. The uncertainty, shown in parentheses �e.g., 3.14 �0.05�
=3.14±0.05� is the standard deviation from five independent simulations.
The results for the two-dimensional systems are in kBT units and methane
results have units of kcal/mole. The table shows estimates of the configura-
tional integral in Eq. �2�, i.e., the constant term is not included in the esti-
mate.

System Exact Estimate

Two-dimensional single-wella −1.1443 −1.1449�0.0003�
Two-dimensional double-wella 5.4043 5.4058�0.0003�
Methane molecule 10.932 10.934�0.002�
aReference 39.
study �Eq. �12��. The physical simulations used Metropolis
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Monte Carlo with kBT=1.0 and 1�106 snapshots in the
physical and reference ensembles. For all two-dimensional
simulations, both coordinates were treated with full
correlations—i.e., two-dimensional histograms were used—
and the bin sizes were chosen such that the number of bins
ranged from 100 to 1000. The error shown in Table I in
parentheses is the standard deviation from five independent
estimates using five separate physical ensembles—and thus
five different reference systems. Good estimates were
also obtained using fewer snapshots—e.g., we obtained
F=−1.142 �0.003� for the single-well potential and
F=5.408 �0.007� for the double-well potential using 10 000
snapshots in both the physical and reference ensembles.

Table I also shows the excellent agreement between the
reference system estimates and the exact value of the free
energy for methane in vacuum. Methane trajectories were
generated using TINKER 4.2 �Ref. 40� with the all-atom opti-
mized potentials for liquid simulations �OPLS-AA� force
field.41 The temperature was maintained at 300.0 K using
Langevin dynamics with a friction coefficient of 91.0 ps−1

and a time step of 0.5 fs. The physical ensemble was created
by generating five 10.0 ns trajectories with snapshots saved
every 0.1 ps. Using the 100 000 methane structures in the
physical ensemble, the reference system was generated by
binning internal coordinates into histograms. The absolute
free energy was then estimated by generating 100 000 struc-
tures for the reference ensemble and using Eq. �10�. All co-
ordinates were binned as independent using 100 bins per
coordinate, thus only one-dimensional histograms were re-
quired. The uncertainty shown in parentheses in Table I is the
standard deviation from five independent estimates using the
five separate methane trajectories—and thus five different
reference systems.

Figure 2 shows the convergence behavior of the refer-
ence system method for methane. Five independent absolute
free energy estimates are shown as a function of the number

FIG. 2. Absolute free energy for methane estimated by the reference system
method as a function of the number of reference structures Nref used in the
estimate. The solid horizontal line is the exact free energy obtained by
numerical integration. Five independent simulations are shown on a log
scale to clearly show the convergence of the free energy estimate. The
results shown were obtained using Eq. �10� with 100 bins for each degree of
freedom, i.e., the estimates for the absolute free energy of methane in Table
I are the values shown here for Nref=1 000 000.
of reference structures used in the estimate. Each of the five
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simulations uses the same protocol as described above, i.e.,
the absolute free energy estimates in Table I are the values
shown in Fig. 2 for Nref=100 000.

Methane was chosen as a test system because intramo-
lecular interactions are due only to bond lengths and angles.
In the OPLS-AA force field no nonbonded terms are present
in the potential energy Uphys for methane, and thus the exact
absolute free energy can be computed numerically without
great difficulty. For methane, a configuration is determined
by �i� four bond lengths, which are independent of each other
and all of the other coordinates in the force field, and �ii� five
bond angles which are correlated to one another but not to
the bond lengths. Thus the exact partition function Zmeth is a
product of four bond length partition functions Zr and one
angular partition function Z�,

Zmeth = Zr
4Z�,

Zr = �
0

	

dre−�Uphys�r�, �13�

Z� = �
0

�

d�1d�2d�3d�4d�5e−�Uphys��1,�2,�3,�4,�5�.

Uphys�r� is harmonic, and thus Zr was computed analytically
using parameters from the force field. For
Uphys��1 ,�2 ,�3 ,�4 ,�5� the correlations between angles must
be taken into account; thus Z� was estimated numerically
using TINKER to evaluate Uphys in the five-dimensional inte-
gral. We found that Fmeth=−kBT ln Zmeth=10.932 kcal/mol
as shown in Table I.

Methane was also used to show that the method cor-
rectly computes the free energy even when the physical en-
semble is incorrect or incomplete. In our studies we found
that the correct free energy is obtained using our method
even when the histogram for each coordinate was assumed to
be flat, i.e., without the use of a physical ensemble �data not
shown�.

Choosing the size of the histogram bins is an important
consideration. Figure 3 shows the large “sweet spot” where
bins are large enough to be well populated, and yet small
enough to reveal histogram features. The figure shows results
for the absolute free energy for a methane molecule using
10 000 structures in both the physical and reference en-
sembles �Nphys=Nref=10 000, �dashed curve�� and 100 000
structures in both ensembles �Nphys=Nref=100 000 �solid
curve��. The small vertical scale of two kcal/mol and the
logarithmic horizontal scale emphasize that there is a wide
range of bin sizes that produce excellent results for the ref-
erence system approach. Error bars are the standard devia-
tion of five independent simulations. The solid horizontal
line shows the exact free energy and the curves are free
energy estimates, using Eq. �10� as a function of the number
of bins used for the histograms for all degrees of freedom.
From this plot it is clear that one should choose at least 50
bins, and that the maximum number of bins that should be
used depends on the number of snapshots in the physical
ensemble—more snapshots in the physical ensemble means

one can use more bins for the reference system.
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B. Leucine dipeptide

Table II shows the agreement for leucine dipeptide
�ACE-�leu�2-NME� between the free energy difference
�Falpha→beta as predicted by the reference system method and
that as predicted via long simulation. The leucine dipeptide
physical ensembles were generated using TINKER 4.2 �Ref.
40� with the OPLS-AA force field.41 The temperature was
maintained at 500.0 K �to enable an independent �F esti-
mate via repeated crossing of the free energy barrier between
alpha and beta configurations�, using Langevin dynamics
with a friction coefficient of 5.0 ps−1. Generalized Born Sur-
face area42 �GBSA� implicit solvation was used, and RATTLE

was utilized to maintain all bonds involving hydrogens at
their ideal lengths38 allowing the use of a 2.0 fs time step.

We calculated reference systems and computed absolute

FIG. 3. Absolute free energy for methane estimated by the reference system
method as a function of the number of histogram bins used for each degree
of freedom. The plot shows the “sweet spot” where histogram bins are small
enough to reveal histogram features, yet large enough to give sufficient
population in each bin. The results are shown with a vertical scale of
2 kcal/mol and on a log scale to emphasize the wide range of bin sizes that
produce excellent results for the reference system approach. The results
shown were obtained using Eq. �10� for a methane molecule using Nphys

=Nref=10 000 �dashed curve� and Nphys=Nref=100 000 �solid curve�. The
solid horizontal line shows the exact free energy and the error bars are the
standard deviations of five independent trials. The plot demonstrates that at
least 50 bins should be used for each independent coordinate and that the
maximum number of bins depends on the number of snapshots in the physi-
cal ensemble.

TABLE II. Absolute free energy estimates of the alpha �Falpha� and beta
�Fbeta� conformations obtained using the reference system method for leu-
cine dipeptide with GBSA solvation, in units of kcal/mol. The independent
measurement for the free energy difference was obtained via a 1.0 
s un-
constrained simulation. The uncertainty for the absolute free energies,
shown in parentheses, is the standard deviation from five independent
10.0 ns leucine dipeptide simulations using 1�106 reference structures in
the reference ensemble. The uncertainty for the free energy differences is
obtained by using every possible combination of Falpha and Fbeta, i.e., 25
independent estimates. The standard error associated with the �Falpha→beta

reference system estimate is 0.18 kcal/mol, reflecting the 25 independent
estimates. The table shows estimates of the configurational integral in
Eq. �2�, i.e., the constant term is not included in the estimate.

System Estimate �kcal/mol� Independent estimate

Falpha 87.3�0.7� ¯

Fbeta 86.3�0.7� ¯

�Falpha→beta −1.0�0.9� −0.85�0.05�
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free energies of the alpha and beta conformations based on
five 10.0 ns trajectories. For all simulations, backbone tor-
sions were constrained using a flat-bottomed harmonic re-
straint �zero force if the torsion angles were within the al-
lowed range, and harmonic otherwise�, namely, for alpha,
−105���−45 and −70�
�−10, and for beta, −125��
�−65 and 120�
�180. The reference system was gener-
ated using 100 000 snapshots from the physical ensemble,
then free energy estimates were obtained by generating
1 000 000 structures for the reference ensemble for each es-
timate. All 115 internal coordinates �excludes bond lengths
constrained by RATTLE �Ref. 38�� were binned as indepen-
dent with 50 bins for each coordinate. The uncertainty shown
in parentheses is the standard deviation from the five inde-
pendent estimates using the five separate trajectories, i.e.,
five different physical ensembles and five different reference
systems.

Since independent estimates of the absolute free energies
of the alpha and beta conformations of leucine dipeptide are
not available, we calculated the free energy difference
�Falpha→beta=−0.85 �0.05� kcal/mol via a 1.0 
s uncon-
strained simulation. The uncertainty of the independent esti-
mate was obtained using block averages. The temperature
was chosen to be 500.0 K which allowed around 1500 cross-
ings of the free energy barrier between the alpha and beta
conformations, providing an accurate independent estimate.
As can be seen in Table II, our estimated free energy differ-
ence is in good agreement with the independent value ob-
tained via long simulation.

We emphasize that the nearly kcal/mol fluctuations ob-
served in our leucine dipeptide estimates are completely in-
dependent of the magnitude of the free energy difference of
the same order. That is, for a similar sized system and similar
CPU investment, one would expect similar uncertainty, even
for a very large free energy difference. This, indeed, is the
motivation for performing absolute free energy calculations.
We believe, moreover, that efficiency improvements will be
achieved beyond the data in this initial report.

Figure 4 shows the convergence behavior of the refer-
ence system method for leucine dipeptide. Five free energy
estimates are shown as a function of the number of reference
structures used in the estimate for �a� the alpha configuration
and �b� the beta configuration. Each of the five simulations
uses the same protocol as described above.

The leucine dipeptide calculations also demonstrate two
important aspects of the particular reference system defined
in this study: �i� the reference system has good overlap with
the physical system and �ii� the reference system is broader
than the physical system. Figure 5 shows a scatter plot of the
�2 torsions of each residue for both the physical and refer-
ence ensembles. Each ensemble contains 100 000 structures.
The figure clearly shows the excellent overlap between the
reference and physical ensembles, as can be seen by the
similarity between the two plots. In addition, the reference
ensemble scatter plot has data in the region �−60,−60� which
does not exist in the physical ensemble, showing that the
reference system is “broader” than the physical system.

Figure 6 shows a histogram of the distance between the

C� atom of residue one and the C� of residue 2 for the same
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ensembles as Fig. 5. The figure again shows how the refer-
ence system has both excellent overlap with the physical
system and is also broader than the physical system.

IV. DISCUSSION

The present results raise a number of questions regarding
the reference system approach to computing absolute free
energies—in particular, regarding the use of correlations, the
importance of the physical ensemble, and the potential for
application to larger systems.

A. Correlation of coordinates

How can correlations among coordinates be used to in-
crease the method’s effectiveness? One may choose to bin
coordinates as independent �i.e., one-dimensional histo-
grams� or with correlations �i.e., multidimensional histo-
grams�. For example, in peptides, one may choose to bin all
sets of backbone � ,
 torsions as correlated, and all other
coordinates �bond lengths, bond angles, other torsions� as
independent. It might always seem advantageous to bin some
coordinates �at least backbone torsions� as correlated, since
reference structures drawn randomly from the histograms
will be less likely to have steric clashes. On the other hand,

FIG. 4. Free energy for leucine dipeptide estimated by the reference system
method as a function of the number of reference structures Nref used in the
estimate. Five independent simulations are shown on a log scale to demon-
strate the convergence behavior of the free energy estimate for �a� the alpha
configuration and �b� the beta configuration. The results shown were ob-
tained using Eq. �10� with 50 bins for each degree of freedom.
including correlations with small bin sizes is impractical. As
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an example, imagine that for the leucine dipeptide molecule
used in this study, one binned the four � ,
 backbone tor-
sions as correlated. If 50 bins for each torsion were used �as
should be done according to the discussion below�, then
there would be 504=6 250 000 multidimensional bins to
populate, which is simply not feasible.

There does appear to be an important advantage to elimi-
nating at least some correlations from the original physical
ensemble: namely, a larger portion of conformational space
becomes available to the reference ensemble �see Figs. 5 and
6�. Since coordinates for the reference structures are drawn
randomly and independently, it is possible to generate refer-
ence structures that are in entirely different energy basins
than those in the physical ensemble. It is thus possible to

FIG. 5. Scatter plots of the two �2 torsions of each residue for leucine
dipeptide. The results are shown for both physical and reference ensembles
containing 100 000 structures each. The figure shows that �i� the reference
system has good overlap with the physical system, as can be seen by the
similarity between the two plots, and �ii� the reference system is more
broadly distributed than the physical system, as evidenced by the data at
�−60,−60� for the reference system that is not present for the physical
system.
overcome the inadequacies of the physical ensemble by bin-
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ning internal coordinates independently. The optimal �pre-
sumably� limited use of correlations will be considered in
future work.

Regardless of the degree of correlations included in Uref,
we emphasize that final results fully include correlations in
the physical potential Uphys.

B. Quality of the physical ensemble

Since the reference ensemble is generated by drawing at
random from histograms which, in turn, were generated from
the physical ensemble, a natural question to ask is how com-
plete the physical ensemble needs to be. The surprising an-
swer is that, for our reference system method, the physical
ensemble does not need to be complete, or even correct
�properly distributed�. Since Eqs. �3� and �9� are valid for
arbitrary reference systems, the convergence of the free en-
ergy estimate to the correct value is guaranteed, in the limit
of infinite sampling �Nref→	�, regardless of the quality of
the physical ensemble. The “trick” is that the ensemble for
the reference system must be converged, which can be
achieved with much less expense since there is no dynamical
trapping. Unlike the typical case for molecular mechanics
simulation, we sample the reference ensemble “perfectly”—
there is no possibility of being trapped in a local basin. By
construction, since all coordinate values are generated ex-
actly according to the reference distributions, the reference
ensemble can only suffer from statistical �but not systematic�
error. For example, it was possible to obtain the correct free
energy for methane based on 10 000 reference structures
even when the histogram for each coordinate was assumed to
be flat, i.e., without the use of a physical ensemble �data not
shown�.

It is important to note that, while convergence to the
correct free energy is guaranteed for any choice of reference
system, the efficiency of the method could be dramatically
reduced if the reference system does not overlap well with
the physical system.

Given the fact that the physical ensemble need not be

FIG. 6. Histogram of the distance between the C� of residue 1 and the C� of
residue 2 for leucine dipeptide. The results are shown for both reference and
physical ensembles containing 100 000 structures each. The figure shows
that �i� the reference system has good overlap with the physical system and
�ii� the reference system is broader than the physical system.
correct, it is easy to imagine a modified method that does not

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



104105-8 F. M. Ytreberg and D. M. Zuckerman J. Chem. Phys. 124, 104105 �2006�
require simulation, but instead populates the histogram bins
using the “bare” potential for each internal coordinate �e.g.,
Gaussian histograms for bond lengths and angles�. Of
course, the conformational state must be defined explicitly,
with upper and lower limits for coordinates. Allowed ranges
for the torsions �especially � ,
� are naturally obtainable via,
e.g., Ramachandran propensities �e.g., Ref. 43�, and reason-
able ranges for bond lengths and angles could be chosen to
be, e.g., several standard deviations from the mean.

C. Extension to larger systems

While the initial results of our reference system method
are promising, a naive implementation of the method will
find difficulty with large systems �as do all absolute and rela-
tive free energy methods�. For our method, the difficulty
with including a very large number of degrees of freedom is
due to the fact that if one does not treat all correlations in the
backbone, then steric clashes will occur frequently when
generating the reference ensemble.

However, it is possible to extend the method to larger
peptides, still include all degrees of freedom, and bin all
coordinates independently �important for broadening con-
figurational space, as discussed above�, by using a “segmen-
tation” technique motivated by earlier works.44,45 Consider
generating reference structures for a ten-residue peptide in
the alpha helix conformation. Due to the large number of
backbone torsions, most of the reference structures chosen at
random will not be energetically favorable. However, if one
breaks the peptide into two pieces, then one can generate
many structures for each segment, and only “keep” energeti-
cally likely segment structures. The selected structures may
be joined to form full structures which are reasonably likely
to have low energy. For example, if one generates 105 struc-
tures for each of the two segments and keeps only 103 of
those, then one only need evaluate 103�103=106 full struc-
tures out of a possible 105�105=1010. A statistically correct
segmentation strategy is currently being investigated by the
authors for use in large peptides.

Another strategy which may prove useful for larger sys-
tems is to use the reference system method with multistage
simulation. Multistage simulation requires the introduction
of a hybrid potential energy parameterized by �, e.g.,

U� = �Uphys + �1 − ��Uref. �14�

Thus, U0=Uref and U1=Uphys. Simulations are performed us-
ing the hybrid potential energy U� �and thus a hybrid force
field, if using molecular dynamics� at intermediate � values
between 0 and 1. Conventional free energy methods such as
thermodynamic integration or free energy perturbation can
then be used to obtain Fphys.

We also believe that including correlations, such as sug-
gested by Eq. �6� and possibly other ways, may be useful.
The inclusion of correlations should improve the overlap be-
tween the reference and physical ensembles—thereby reduc-
ing the amount of sampling required in the reference system,

hence improving efficiency. This also will be explored in
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future work. �We also remind the reader that the final free
energy value includes the full correlations in Uphys, regard-
less of Uref.�

The method could prove useful in future protein-ligand
binding studies. In the simplest approach, one could freeze
all degrees of freedom except for the ligand and side-chain
degrees of freedom in the binding site. While the absolute
free energy would be unphysical, the approach could permit
comparison of ligands or protein mutations with little or no
conformational similarity.

In principle, it is possible to extend the reference system
method to include explicitly solvated biomolecules. How-
ever, as with all absolute free energy methods, the addition of
the solvent degrees of freedom causes the free energy esti-
mate to converge much more slowly than without explicit
solvent. Thus, we feel that the method described in this study
will find use primarily in implicitly solvated biomolecules.

V. CONCLUSIONS

In conclusion, we have introduced and tested a simple
method for calculating absolute free energies in molecular
systems. The approach relies on the construction of an en-
semble of reference structures �i.e., the reference system�
that is designed to have high overlap with the physical sys-
tem of interest. The method was first shown to reproduce
exactly computable absolute free energies for simple systems
and then used to correctly predict the stability of leucine
dipeptide conformations using all 115 degrees of freedom.

Some strengths of the approach are that �i� the reference
system is built to have good overlap with the system of in-
terest by using internal coordinates and by using a single
equilibrium ensemble from Monte Carlo or molecular dy-
namics; �ii� the absolute free energy estimate is guaranteed to
converge to the correct value, whether or not the physical
ensemble is complete and, in fact, it is possible to estimate
the absolute free energy without the use of a physical en-
semble; �iii� the method explicitly includes all degrees of
freedom employed in the simulation; �iv� the reference sys-
tem need only be numerically computable, i.e., the exact
analytic result is not needed; and �v� the method can be trivi-
ally extended to include the use of multistage simulation.
The CPU cost of the approach, beyond that for short trajec-
tories of the physical system of interest, is one energy call for
each reference structure, plus the less expensive cost of gen-
erating the reference ensemble.

In the present “proof of principle” report, our method
was used to study conformational equilibria; however, we
feel that the simplicity and flexibility of the method may find
broad use in computational biophysics and biochemistry for
a wide variety of free energy problems. We have also de-
scribed a segmentation strategy, currently being pursued, to
use the approach in much larger systems.
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