Anisotropy of static and dynamic orientational correlations in N-alkanes
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Static and dynamic orientational correlations in #-alkanes are analyzed using the rotational
isomeric states formalism and its newly introduced adaptation to local chain dynamics. For
systems in equilibrium, the anisotropy of directional correlations is investigated in relation to
the respective orientations of two coordinate frames rigidly attached to the terminal bonds.
The resulting static correlations exhibit a strong odd—even effect depending on the number of
intervening bonds between the two frames. Dynamic correlations, on the other hand,
necessitate the analysis of the time-dependent autocorrelation of a single reorienting frame
rigidly embedded in the motional molecule. Expressions for both the first and second
orientational correlation functions—identified according to the order of the associated
Legendre polynomials—are formulated, for static and dynamic systems. Dynamic correlations
are mathematically related to static correlations through the limiting values to which they
asymptotically converge, as time goes to infinity. The orientational correlations are calculated

to be strongly anisotropic in all cases.

I. INTRODUCTION

Statistical mechanical analysis of equilibrium configu-
rations in n-alkanes and numerous other polymer chains of
finite length reveals the highly asymmetric spatial distribu-
tion of atoms. > The density distribution W (r) of the end-to-
end vector r considerably departs from a symmetrical three-
dimensional Gaussian distribution for chains with N < 100,
where N denotes the number of skeletal bonds. The degree of
anisotropy may be estimated by calculating the tensorial
averages (r*”) of the pth direct product of the end-to-end
vector.'~> Orientational correlations between two vectors af-
fixed to two different locations along the chain are also indi-
cative of the anisotropy intrinsic to polymeric structure.
More specifically, correlations among the components of a
vector affixed to a point along the chain with those of an-
other vector at a different point give a complete description
of anisotropy at equilibrium.

Consideration of the spatial anisotropy of configura-
tions further suggests that dynamic transitions of specific
directions from one state to the other should also be aniso-
tropic. That the relaxation behavior for a vector rigidly em-
bedded in the molecule depends on its specific orientation
with respect to the main chain is confirmed by both previous
theory and experiment.*~” The characterization of local mo-
tions stipulates, according to the theoretical analysis of Jarry
and Monnerie,” the consideration of essentially two aniso-
tropic quantities, referred to as (i) the orientation-mobility
amplitude correlation describing how the amplitude of the
motion is distributed among different initial orientations,
and (ii) the directivity of mobility describing the relative
intensity of motions in planes of different orientation. The
orientational relaxation of various vectors rigidly attached
to the polymer backbone was theoretically investigated by
Weber and Helfand® through Brownian motion simulations.
The decay of the autocorrelation functions with time was
found to depend considerably on the direction of the investi-
gated vector.® In fact, in fluorescence anisotropy decay ex-
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periments carried out by Valeur and Monnerie,* the fluoro-
phore with its transition moment perpendicular to the
backbone was found to relax much faster than that directed
along a skeletal bond. Also, the discrepancy between the
results from picosecond holographic technique and NMR
measurements for a specific system, was attributed by Hyde
et al.’ to the fact that the reorientation of different intramo-
lecular vectors were observed in the two experiments.

In the following section, we develop a mathematical
method for calculating static and dynamic directional corre-
lations in a chain. The application to real chains relies on the
use of rotational isomeric states formalism, as presented in
Sec. I1. Also in the same section, dynamic correlations asso-
ciated with conformational transitions of skeletal bonds are
treated according to the recently introduced dynamic rota-
tional isomeric state analysis.>® The results from calcula-
tions are given in Sec. IV, which is followed by concluding
remarks in Sec. V.

Il. DEFINITIONS AND FORMULATION

Let 4 and B be two points along the polymer chain
shown in Fig. 1. The vectors a; at 4 and b, at B represent two
sets of orthonormal base vectors rigidly attached to the
chain. Let m”? and m® be two vectors rigidly embedded in
the frames a; and b, at points 4 and B, respectively. They are
written in component form as

m? = m?h,, (1)

where m? and m? are the scalar components of m* and m”
along the frames a; and b;, respectively. There is summation
over repeated indices.

In order to analyze the internal correlations associated
with configurational statistics we take the frame a; as fixed
and consider the static cross-correlations between the base
vectors a; and b, . Dynamic correlations, on the other hand,
are determined by the time-dependent autocorrelations of
the base vectors b, (¢) at time .

m? = mia,,
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FIG. 1. Schematic representation of a portion of a short chain with two
coordinate systems located at points A and B. The vectors a; and b, repre-
sent two sets of orthonormal base vectors attached at 4 and B, respectively.
The vectors m* and m? are rigidly embedded in the two reference frames.

In general, experimental data are interpreted in terms of
correlation functions employing first and second Legendre
polynomials. First-order Legendre polynomials are involved
in experiments such as dielectric relaxations, infrared ab-
sorption, etc.'® while a broad class of experiments for prob-
ing molecular dynamics (dynamic light scattering, ESR,
NMR, depolarization of fluorescence, etc.) are described by
the Legendre polynomials of second order. In order to ac-
count for both types of experiments, first and second correla-
tion functions in their most general anisotropic form will be
defined in the following. They are classified into two groups,
static and dynamic, comprising both the first and second
correlation functions, separately.

A. Static correlations
We define the first static correlation function §', ; as
Sl,yE(ai'bj(o))- (2)
Here the time argument of a; is omitted as they are fixed in
space. The dot denotes the scalar product.

The components of b; may be represented with respect
to the system a; as

b](t) =b'](t)a" (3)
where b;; is the cosine of the angle between a, and b;. Substi-
tuting Eq. (3) into Eq. (2) leads to

Sl,ij = (b,j(O)). (4)

Similarly, the second static correlation function may be de-
fined as the fourth-rank tensor

84, =1(3[b;(0)-a, ] [b;(0)-a,] — 8,84, (5)
where §; is the Kronecker delta. Substituting from Eq. (3)
into Eq. (5) gives

Sg,lij =£(3bki(0)b1j(0) --5,:,»6“) (6)

which is identical to the generalized order parameter tensor
previously introduced for the analysis of liquid crystal sys-
tems.'! §'5'; is symmetric in the indices (i/) and (k,]) sepa-

rately and is traceless with respect to both pairs of indices,
ie., §5, =S = 0. This follows from the orthonormality
of the reference frames a; and b;, which may be expressed by
the relation

by ()b, (1) =8, (7N

B. Dynamic correlation functions

For a stationary process, we define the first dynamic
correlation function as

M, ; (1) = (b;(0)-b; (1)) (3)
which may be represented through the use of Eq. (3) as

M, (1) = <bki(0)bkj(t)>- 9
At t = 0, the orthonormality condition leads to

M, ;(0)=4; (10)
and at f = oo, we have

Ml,ij(°°) = (bkl‘(o))<bkj(0)> =S1,kisl,kj' (11)

The second dynamic correlation function is defined as
M, (2) = 1(3[b, (£) by (0) ] [b, ()b, (0) ] — 8,4)-
(12)
Substituting from Eq. (3) into Eq. (12), we obtain

M3 (2) = 4(3b,,, ()b, (0)b,;(0)b,,(0) — 5,8,).
(13)

Att=0, Eq. (12) gives

Mé‘,',-j(O) =1(3646; —6,64). (14)
Attt = w0, Eq. (13) may be written as
M3;5(0) =3(b,,:(0)5,;(0)) {8, (0)b,,,(0)) — 8,6,,/2

mn

2 S 2kt (15)
where the second line is obtained by the use of Eq. (6).

=2
3

Ill. ROTATIONAL ISOMERIC STATE CALCULATIONS
OF CORRELATIONS

A. Static correlations

The all-trans configuration of an n-alkane chain of n
repeating units is shown in Fig. 2. The reference frames a,
and b; are affixed to the terminal bonds of the chain. Bond
numbers are denoted on each bond. ®;, is the torsional angle
corresponding to bond i. For n-alkanes three isomeric states,
trans (t), gauche + (g*), and gauche — (g~ ), character-
izedby ®; = 0°, + 120°, and — 120°, respectively, are ener-
getically most favorable. & is the supplemental bond angle,
assumed to be 68° for all consecutive bond pairs. The frame
a; is fixed in space as stated above. The first two bonds lie in
the a, — a, plane. The transformation matrix from bond
i+ 1tobondiis

cos & sin 6 0
T,=|sinfcos®, —cosOcos®, sinQP, . (16)
sinfsin®, —cosfsin®;, —cosd,

The equilibrium average (b,~j (0)) in Eq. (4) may conve-
niently be expressed in matrix notation as the ijth element of
the first static correlation matrix (S,). The latter is obtain-
able from the product of transformation matrices as
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FIG. 2. Schematic representation of the all frans configuration of an n-al-
kane chain with N skeletal bonds. The frames a, and b; are affixed at both
ends as described in the text. 8is the supplemental bond angle. The frame a;
is fixed in space while b; undergoes translational and/or rotational motion
depending on the internal configurational transitions of the chain.

(S;)= (T, T,T;T,_,). an
The ensemble average in Eq. (17) is computed, according to
the conventional rotational isomeric states formalism'®
from

n—1
(S =Z'F e LTl [] [(Ux e L) T[] (J & L5),
k=2
(18)

where & denotes the tensor product, & is the bond number
index, and

zZ= J‘Uz("l'[1 Uk)U,, .,
k=2
1 1 0 O
J=[1 0 0], J= 1, L=|0 1 0f,
0 0 1
1 o
U.=|1l ¢ aa)] 2<k<n—1, (19)
1
1 1
U,=0,_ =1 1 0],
1 0 1
T(® =0
IT|| = T(® = 120°) ,
T(® = 240°)
and
oc=exp(—E,/RT), w=exp(—E,/RT),

E, being the energy of a gauche state relative to trans, and
E, thatforag®* gF pair in excess of the energy 2E,,. More
detailed discussion of equilibrium statistics of n-alkanes and
the matrix multiplication technique to generate configura-
tional averages may be found elsewhere. %12

It should be noted that the summation convention
adopted throughout Sec. II is valid only for indices referring
to coordinates and does not hold for those, in Sec. I11, refer-
ring to bond sequence number and/or configuration num-
ber.

In analogy with the above treatment the average
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(b (0)b,;(0)) [in Eq. (6)] involving four indices may be
associated with a fourth-rank tensor {S,), referred to as the
second static correlation tensor. The latter will be given by

(S,) =1(3(S,e8)) - L), (20)
where the quantity (b,, (0);(0)) has been replaced by
(T, T,_ )@ (T,T, ' T,_)) =(S;8S))

and I, is the identity matrix of order 9. The term (S, ® S, ) is
readily evaluated from

(S,8S,) = <"1:[1(T,.®T,.)>

i=1
=Z'JeL)|T,eT,|

n—1

X I] [Uk o LT, @ T;[| ]I © L, @n
k=2

where the first equality results from the theorem on direct
products.

B. Dynamic correlations

The stochastics of conformational transitions of N se-
quential bonds is fully described by the time-dependent joint
probability matrix 2™ (¢) (Ref. 9). 3" configurations de-
noted each by {®},, i = 1to 3V, are available to an N-bond
sequence on the basis of three isomeric states per bond. The
ijth element Z ™ (1) of 2™ (1) represents the joint prob-
ability of occurrence of the configuration {®}; at time f and
{®}; at t=0. Let us consider, for example, the element
Z M (¢) for the passage to state {®};, ={aBys -} at
time ¢, from the initial state {®};, = {a’B'y’8'* - }. This ele-
ment will be represented by the symbol p(a B 78,....t;
o B'y 4,..,0). Here a,B,y,6,etc. denote the isomeric states
of successive skeletal bonds. As in the treatment of equilibri-
um statistics the interdependence of skeletal bonds is incor-
porated in the theory, through adoption of pairwise depen-
dent transitions.® Thus,

p(aBys,...t; 'B'Y'Y,...,0)
=p(aBt; a'B’',0)q(By.t:8'v ,0)q(¥d,t,y'6',0),
where

g(Br:t,8’ v',0)
=pBr.tB'v,0)/Y > pBntB' 5,0).
n

The summation in Eq. (23) is over all possible rota-
tional states, thus includes nine terms for 7 =#,¢*,g~ and
¢ =tg*,g”. The term g(By,t;8' v',0) gives the conditional
probability of transition from initial state ¢’ to state y at time
t for the second bond of a pair, given that the first bond
undergoes the transition from state 8’ to 8. The problem
thus reduces to the evaluation of joint probabilities for the
pairs such as p(aBta’B’,0), ie., the eclements of
PD(1).2?(1) are evaluated from®®

P(1) = exp{A?(1)}2?(0)
— B(z) exp{L‘z’(t)}[B‘Z)] -1 diag .@(2)(0)

where B® is the matrix formed from the eigenvectors of A
L® the diagonal matrix of the eigenvalues of A%. A® is the

(22)

(23)

(24)
@
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9% 9 matrix whose jjth element describes the momentary
rate of passage from initial configuration {®}; to {®}, at
time t. Kramer’s high friction rate expression,'* also adopted
by Helfand and Skolnick'* in their kinetic treatment of con-
formational transitions is used in the elements of A?. The
activation energies in the rate expressions are determined
from the heights of saddles between isomeric states, on the
basis of two-dimensional energy maps.’

Pursuant to the calculation of first and second dynamic
correlation functions, the elements 2 () are used as sto-
chastic weights for the passage from configuration {®}, to
configuration {®},. Consequently, the second-rank tensor
M, (¢) of the first dynamic correlation functions becomes

M,(1) =3 3 [Z{"(OFF,], (25)
i

where F; = (T,T, --T,_, ); is the product of transforma-
tion matrices for configuration {®}; and F7 is its transpose.

Similarly, the second dynamic correlation tensor M, (¢)
is obtained from

M0 =133 3 7066 -L], @6
LI |
where
n—1
G.=F,oF, =[] (T.oTo)] 27)
k=1 i

is characteristic of a specific configuration {®},.

IV. CALCULATIONS

Calculations were performed for n-alkanes, C, H,,, , ,,
with n varying from 6 to 11. The terminal bonds being kept
in trans state, 3" 2 configurations, where N = n — 1 s the
number of skeletal bonds, are available for C, H,,, , ,. The
energies E, = 0.5 and E, = 2.2 kcal/mol were used at
T = 300 K. Both static and dynamic correlations were con-
sidered and will be presented separately.

A. Static correlations

First and second static correlation tensors are calculat-
ed from Eq. (17) and Eqgs. (20) and (21), respectively. The
results from calculations are given in Figs. 3 and 4, as a
function of chain length represented by the number of skel-
etal bonds N. Both figures display the strong odd—even ef-
fect, characteristic of short chains, which is expected to
gradually disappear with increasing chain length. In Fig. 3
the three principal values (11, 22, and 33) of the tensor (S,)
are shown by the solid broken lines. The dashed line repre-
sents the 12 (or 21) component, the only nonzero cross-
correlation function in {S;). A larger number of correlation
functions is involved in the second static correlation tensor
(S,). However the number of distinct correlation functions
is considerably reduced due to symmetry relationships
(S%, =S4, and S5, = §4%,,) and orthonormality condi-
tions (S5, = 1). Let us consider the nine correlation func-
tions S4, (In the following, there is no summation over
repeated indices. In the figures, underscores are placed un-
der the indices to suspend summation. ) Six equations result-
ing from the interchangeability of upper and lower indices
and from orthonormality conditions reduce the number of

0.2

S

0.05 —

-0.05 | 1 I | | |

FIG. 3. Dependence of the first static orientational correlation function on
chain length. The three principal values S, , of the tensor (S, ) are shown by
the solid lines as a function of the number N of skeletal bond. The only
nonvanishing cross-correlation S, ;, is shown by the dashed line. Curves in
Figs. 3-8 are calculated for T= 300K, E, = 0.5, and E,, = 2.2 kcal/mol.

independent unknowns to three. Thus, specification of the
three correlation functions 4 ; with i = 1,2,3 fixes the re-
maining six functions. Consequently, only the relevant cor-
relation functions S ; (i = 1,2,3) are shown in Fig. 4. As to
the remaining correlation functions S ’2",, with i#j and/or
k #1, they are not reported in the present study inasmuch as
no current experimental data are available for their verifica-
tion. It should be mentioned, however, that all 4, where
one of the indices equals three are identically equal to zero,
due to the symmetry of the chain structure with respect to

FIG. 4. Dependence of the second static orientational correlation function
on chain length. The three components 4, (i = 1,2,3) of the tensor (S,)
are calculated for various N. The result for i = 2 is shown by the dashed line
for clarity.
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the a,a, plane. The remaining functions are symmetric in the
indices (i) and (k,/), as expected.

The analysis of Figs. 3 and 4 reveals the highly aniso-
tropic character of static correlations in finite chains.

B. Dynamic correlations

The calculation of dynamic correlation functions neces-
sitates the analysis of pairwise dependent conformational
transitions. To this end, the matrix A? for n-alkanes, as giv-
en explicity in Ref. 9, was used in Eq. (24). The obtained
joint probabilities for the pairs were in turn substituted into
Eqgs. (22) and (23) to determine 2™ (¢). The elements of
the latter are used in Egs. (25) and (26) to compute the first
and second dynamic correlation tensors, respectively.

By repeating the calculation scheme described above for
various times, the relaxation curves depicted in Figs. 5 and 6
are obtained. The curves are drawn for N = 6 and T = 300
K. Figure 5 displays the decay of the principal values M, ;
(i = 1,2,3) of the first dynamic correlation tensor M, (#),
while the curves in Fig. 6 exhibit the decay of the three auto-
correlation functions Mi,-,- (i = 1,2,3) of the second dynamic
correlation tensor M,(#). In both cases, the vector perpen-
dicular to the backbone (i = 3) relaxes most rapidly and to
the lowest asymptotic value. The relative behavior of the
correlation functions with / = 1 and 2 depends on the type
(first or second) of the orientational correlation investigat-
ed. In both figures the correlation functions for N = 8 and
i = 3 are shown by the lowest dashed line. Faster relaxation
with longer sequences is indicative of the higher number of
paths available for relaxation. This behavior, however, is ex-
pected to be eventually reversed, as the sequence size in-
creases, owing to gradually dominating frictional resistance.

The limiting values to which the dynamic correlation

t (ns)

FIG. 5. Principal values M |, of the first dynamic orientational correlation
tensor M, vs time (7 in nanoseconds) for NV = 6. The dashed curve repre-
sents M ,; () for N = 8.

0.8

FIG. 6. Time dependence of the second dynamic correlation tensor M,. The
decay of the three values M}, with /= 1,2,3 for N = 6 are shown by the
solid curves. The decay for i = 2 is calculated to be slower than that for
i==1, in contrast to the results for the first dynamic correlation tensor
shown in Fig. 5. The dashed curve is calculated for i = 3, N= 8.

functions asymptotically converge as ¢ goes to infinity are
shown in Figs. 7 and 8, for various chain lengths. The curves
are obtained using Eq. (11) for M,( ) and Eq. (15) for
M, ( w0 ). It is seen that the unit vector in the z direction (i.e.,

0.20—
0.12—
)
:..
0.04—
—t 33 H I
5 6 7 8 9 10
N

FIG.7. M, () vs N, for / = 1,2,3. The argument of M , ; indicates the
ultimate values to which the correlation functions asymptotically converge
in the limit as ¢— co. The result for M, ,, is given by the dashed curve.
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0.04—

FIG. 8. M4 ,(0) vs N, for i = 1,2,3. Figures 7 and 8 show that for short
chains (N < 10) some internal orientational autocorrelation inherently re-
sulting from chain structure and equilibrium statistics, persists, for the mo-
tional frame b, regardless of the time domain.

b;) of the bond-based reference frames is almost uncorrelat-
ed regardless of the chain length. However, a finite autocor-
relation indefinitely persists for the remaining two compo-
nents of the reorientating frame, for N < 10, as concluded
from the nonzero dynamic autocorrelation functions for
t = oo in both figures. The vector b, exhibits stronger auto-
correlation compared to b, in Fig. 7 while the opposite situa-
tion occurs in Fig. 8. The change in their relative magnitudes
is consistent with the preceding calculations (Figs. 3—6).

V. CONCLUSION

In the present work, static and dynamic correlations in
n-alkanes were considered in relation to the orientation of
the investigated vector with respect to the main chain. Static
correlations were computed on the basis of conventional ro-
tational isomeric states formalism and the related matrix
multiplication techniques. Dynamic correlations were inves-
tigated using a recently introduced approach where the
structural properties of n-alkanes are incorporated into the
calculation scheme through the use of the rate matrix A®
describing the momentary rate of passage over saddles in
energy maps.

Both static and dynamic correlations are classified into
two groups referred to as the first and second correlation
functions. Such a classification was necessary in view of the
fact that different correlation functions are probed in various
experiments. For instance, Fourier transforms of first static
and dynamic correlations resulting from the collective con-
tribution of a group of permanent dipoles is observed in di-
electric relaxation while most of spectroscopic experiments
involve second correlation functions generally associated
with the reorientation of a single vector. Previous theoretical
models'*~'® of chain dynamics were found to fit the decay
curves of both types of correlation functions by suitable ad-

justment of parameters. Thus as Skolnick and Yaris pointed
out,?® the model of Valeur, Jarry, Gény, and Monnerie, '’ the
cutoff diffusion model of Bendler and Yaris,'® the damped-
diffusion model of Skolnick and Yaris, all predict the equiv-
alence of the two types of dynamic correlation functions.
From the examination of Figs. 5-8, it is seen that the princi-
pal values of the two tensors M, (¢) and M, (¢) exhibit simi-
lar dependence on time and converge asymptotically to
about the same limiting values. Thus, although second dy-
namic correlations relax slightly faster and to somewhat
lower limiting values compared to those associated with
M, (¢), same functional forms may, in fact, represent, as a
first approximation, both types of correlation functions by
suitable choice of parameters. However a clear distinction
between them appears on the grounds of their anisotropic
character. Vectors along the main chain (b, ) exhibit strong-
est autocorrelation as far as first dynamic correlations are
concerned but as to the second dynamic correlations, the
relative behavior of b, and b, is inverted. b, relaxes more
slowly and to higher asympotic value. This feature draws
attention to the importance of the relative orientation of the
investigated vector (e.g., the transition moments of chromo-
phores, the *C-H bonds) with respect to the main chain.
The vector b, relaxes very fast in both cases, in agreement
with the out-of-plane vector in Weber and Helfand’s simula-
tions.®

From Figs. 2 and 3 it may be seen that static correlations
possess the same type of anisotropy, as the dynamic ones.
The odd-even effect in (S,) is more pronounced compared
to (S,). Again no significant correlation exists between vec-
tors in z direction of bond-based reference frames. Persis-
tence of directional correlation between the terminal bond
vectors of a, o disubstituted n-alkanes was theoretically and
experimentally analyzed by Abe er al.?° For N< 10 the direc-
tional correlation between the terminal bond vectors was
found to be far from random.

Although the results are presented here for finite chains
with one end fixed, they may also be adopted to the analysis
of correlations in segments of long chains as previously treat-
ed.®

Another example of a sequence with a fixed end is en-
countered in the packing of short chain molecules in inter-
phases such as bilayer membranes.?! The organization of
short chains in planar bilayers or in micelles or vesicles?? is
similar to that between crystalline and amorphous regions in
lamellar semicrystalline polymers.?® In all cases, the packing
is expected to be strongly affected by the orientational an-
isotropy intrinsic to the polymeric structure.
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