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Correlated fluctuations in polymer networks
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Polymer micronetworks with Cayley tree and random topologies are compared. The fluctuations of junc-
tions in random networks exhibit significant departures from the mean value corresponding to those in
Cayley tree topology. Correlations among the fluctuations are examined for the two types of networks.
Correlations are stronger, and cover longer distances along the chain contours in random networks,
compared to those observed in Cayley trees. This is a consequence of the non-uniform spatial distribution
of connected vertices in a random network, as opposed to Cayley trees in which chains extend between
junctions located in successive tiers only. The relaxation spectra of the two types of networks are com-
pared. The cumulative distribution of frequencies obeys a power law dependence on frequency, with
exponents of 1.4 and 1.1 for trifunctional Cayley tree and random networks, respectively. These exponents
are significantly smaller than the Debye value of 3 for regular three dimensional crystals. € 1998 Elsevier

Science Ltd. All rights reserved.
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INTRODUCTION

The phantom network model of networks forms
the basis of the theories of rubber elasticity!. Its
foundations were established by James and Guth?.
The importance of the model in interpreting
molecular deformation, neutron scattering and
effects of entanglements were realised much later,
however®.

The first systematic treatment of junction fluc-
tuations for interpreting scattering from deformed
phantom networks is given by Pearson® followed
by different levels of generalisation by various
authors®®°, A concise and complete derivation of
junction fluctuations in phantom networks is given
by Kloczkowski et al. for unimodal and bimodal
networks having the topology of a Cayley tree®.
This topology allows for a closed form solution
of the problem. In a Cayley tree, depicted in
Figure Ia, there is no randomness; there are no
loops. Chains originating from junctions of the ith
tier always terminate in junctions of the (i+ 1)st
tier, and the junctions on the final tier are assumed
to be fixed in space. In a real network, shown in
Figure 1b, the operational definition of a tier
becomes ambiguous. However, for establishing a
framework of comparison with Cayley trees, it is
possible to conceive virtual tiers, based on the spa-
tial distribution of junctions in the neighborhood
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of a central one. In such a network, the topology is
random. A systematic treatment of fluctuations in
random networks has not yet been attempted. In
the present study, we evaluate the fluctuations in
chain dimensions and in junction positions for a
network with random topology, and show its dif-
ferences from those of a network with Cayley tree
topology.

THEORY

General formulation of the problem

The configurational factor for Gaussian networks
is expressed as*

Zy = Kexp(-{AR}T{AR}) ()

Here {AR} is the 3N dimensional vector formed by

the fluctuations {AR;, AR,,...,ARy} of the junc-

tions, the superscript 7 denotes the transpose, X is

a constant, and I is a symmetric matrix known as

the Kirchhoff or valency-adjacency matrix in

graph theory!?. The elements of I' are given by
F,__{—V ifi#j}

T Eiyly

if = (2)

where y=3/(2<r?>,, <r’>, being the unper-
turbed mean-square end-to-end distance of a single
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Figure 1 Schematic representation of phantom network models with
(a) Cayley tree and (b) random topologies. Both models contain the
same number of chains, all chains being of equal size, and both net-
works have functionality ¢ =3. They differ in that the Cayley tree
contains no loops, and its junctions belong to successive tiers, starting
from the innermost junction, labelled 1. In the random network, no
hierarchy of junctions or polymer chains is distinguishable. Chains
from different tiers (defined here in a virtual sense by analogy with a
Cayley tree) may equally well be connected by a junction

network chain. The summation for evaluating I';; is
performed over all off-diagonal elements on the ith
column (or row). We note that I' is defined for two
subsets of junctions, shortly referred to as fixed and
fluctuating junctions, conveniently organised in
submatrices®. In the following the submatrix asso-
ciated with fluctuating junctions, only, is taken into
consideration.

Correlation between junction fluctuations

The equilibrium correlation between the fluctua-
tions of junctions i and j is given by>¢

< ARqAR; >= (3/2)(I""), (3)

In Cayley trees of infinite size, the average fluctua-
tions of junctions / and j separated by d other
junctions along a path may be expressed by the
matrix®

< (ARIZ) > < AR,ARI >
<AR:AR;> < (AR})> |
B B @1 1
_3_[(1“ Da (T l)ji] 3| WD gie-die-1)
20, (Y| 2y ! ¢l
Ty I v ¢(e-2)(¢—1)" $)4-2)
(4)

where ¢ is the junction functionality.
Fluctuations in distances between junctions
The mean-square fluctuations in the dimensions of

the path r; between junctions i and j are obtained®
by substitution from equation (4) into

< (Arlf,')2 >=<(AR; — ARj)2 >=<(AR)?>
+ <(AR_,-)2>—2 <AR;AR;>  (5)
=3/2((r7); + (71 — 2",

which leads to

<(Ary)*> _ 2 (- N4t~
(- 1)

96 —2)

The Kirchhoff matrix for the Cayley tree shown
in Figure la is given in previous work®®. For the
random network of Figure 1b, the matrix may be
obtained by randomising the locations of the off-
diagonal non-zero entries. For each junction of the
micro-network, depending on the functionality, ¢
different random numbers are allocated by the
random number generator which assigns equal
weights to numbers in the interval [0,1]. The
inverse of the matrix obtained in this manner can-
not be expressed in closed form. In the present
work, the inverse of I" and the analytical expres-
sions given by equations (3)—(6) are evaluated
numerically for trifunctional, tetrafunctional and
10-functional networks of 600, 300 and 900 chains,
respectively, and the behaviours of the two types of
networks with different topologies are compared.

(6)

<rl>

RESULTS AND DISCUSSION

Junction fluctuations

The mean-square fluctuations of junctions for tet-
rafunctional networks (i) in the form of a Cayley
tree, and (i1) with a random topology are compared
in Figure 2. The heavy and thin lines represent the
results for the two respective cases. Networks
comprising 302 junctions are considered here.
Junctions are assigned numbers which increase
with the number of tiers, as illustrated in Figure 1.
The analytical solution given by equation (4) yields
a constant ordinate value of 3/8 for the ratio
<(AR)*>/<r’>, in a tetrafunctional infinite
Cayley tree. In finite size Cayley trees, as the one
presently considered, the fluctuation amplitudes
decrease as the fixed junctions at the extremities of
the tree are approached. The thick line in Figure 2
displays this behaviour, the stepwise decreases
referring to the passage from one tier to another.
The thin line, however, displays the mean-square
fluctuations of junctions in the tetrafunctional net-
work of random topology. The fluctuations vary
about the mean value of 3/8 of the infinite Cayley
tree. However, significant scatter and dependence
on junction location is observed in this case,
similarly to the fluctuations of residues in protein
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Figure 2 Mean-square fluctuations in the junctions of tetrafunctional
networks. The ordinate represents the fluctuations < (AR?) > of the
individual junctions 1 < i < N expressed relative to the unperturbed
mean-square end-to-end separation <r?>; of network chains. The
thick line refers to a Cayley tree of 302 junctions while the thin line
represents the behaviour of the junctions in a network of random
topology. The mean value of the fluctuations for the random topology
coincides with that (3/8) of the Cayley tree in the limit of infinite size
networks. The stepwise decreases in the junction fluctuations for Cay-
ley tree are associated with the passage from one tier to another,
towards the fixed junctions on the exterior

crystals!!. The similarity between the fluctuation
behaviour of the two systems results from the
similar form of their Kirchhoff matrices, which
includes the effects of both chain connectivity and
long-range (along the chain contour) associations.
It is to be noted that the calculations are performed
here for a single random network, representative of
a quenched system.

Fluctuations in chain dimensions

The mean-square fluctuation <(Ary)?> in the
end-to-end separation of two junctions i and j
separated by d junctions is given by equation (6)
for an infinite size Cayley tree. This relationship is

2 5 10
number of chains in path

Figure 3 Mean-square fluctuations in the distance r; between junc-
tions / and j separated by several junctions along a given path, plotted
against the separation, in terms of the number of intervening junc-
tions, between / and j. Results are shown for trifunctional (upper
curves) and 10-functional (lower curves) networks. Thick solid lines
refer to infinite size Cayley trees [equation (6)]. Thin solid lines are
their counterparts obtained numerically for finite size Cayley trees.
The dashed lines represent the results for random topologies

illustrated in Figure 3 (thick solid curves) for Cay-
ley trees with functionalities ¢=3 and 10. The
fluctuations increase with the number of junctions
in the path between junctions / and j. For a tri-
functional Cayley tree the fluctuations converge to
a fixed value of 4/3 beyond approximately d=7
chains along the path. In the case of tetrafunc-
tional Cayley trees (not shown) the fluctuations
converge to a fixed value at much shorter separa-
tions along the chain contour (=3 intervening
chains), while for 10-functional Cayley trees, prac-
tically no dependence on path length is observed.
Alternatively, one can say that three and tetra-
functional Cayley trees are self-similar above
length scales covering 7 and 3 chains, respectively,
along a path. A 10-functional network with Cayley
tree topology is self similar at all length scales.

The thin curves in Figure 3 refer to the results
from numerical calculations performed for finite
size Cayley trees of ¢=3 and 10. The difference
between the thick and thin solid curves therefore
reflects the finite size effects. In order to keep track
of the junction identities i and j connected by a
given number (d) of chains along the path, the
following theorem is utilised:'? junctions i and j are
separated by (d—1) junctions if the ijjth element of
the matrix A“ is equal to one. Here A is the adja-
cency form of the Kirchhoff matrix T, the diagonal
terms of which are equal to zero, and the non-zero
off-diagonal elements are taken as one. The super-
script d denotes the dth power.

In Figure 3, the correlations for random net-
works are represented by dashed curves. For 10-
functional networks, the curves for Cayley tree and
random network topologies are almost indis-
tinguishable. For trifunctional networks, however,
random topology leads to stronger and longer-
range correlations compared to those observed in
Cayley trees. In a Cayley tree, each chain emanates
from a junction that belongs to a well-defined
branch, and inter-branch interactions are not per-
mitted. In contrast, in the case of a random topol-
ogy, inter-branch interactions are allowed through
close circuits. These circuits, in turn, furnish the
structure with additional spatial memory. The dif-
ference between the two topologies vanishes as the
functionality increases because of extensive cover-
age of the three-dimensional space and the resulting
effective decrease in the spatial separation between
chains originally distant along a given path.

Frequency distributions
The time evolution of cross-correlations between

fluctuations of junctions / and j is conveniently
expressed as a sum of exponentials!?
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< AR(0)-ARy(1) > = Y~ Aexp{—4t/n} (7)
k

Here J is the kth eigenvalue of T, A} is the jjth
element of the matrix 4, 'w,u,” formed by the kth
eigenvalue and eigenvector w, of I', and 1y is a
characteristic relaxation time. Thus, the time decay
of correlations is determined by the eigenvalue
distribution g(A), the eigenvalues A4; (1 <k < N)
being representative of the frequencies of the N
modes of relaxation associated with the vibrational
dynamics of the N junctions. The eigenvalue spec-
trum is one of the fundamental characteristics of
polymer networks!#!5,

In Figure 4a, the relaxation spectra g()) are
plotted for trifunctional (solid) and 10-functional
(dashed) Cayley tree (thick lines) and random
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Figure 4 (a) Relaxation spectra for trifunctional and 10-functional
networks. Solid lines refer to trifunctional networks, and among them
the thinner ones represent the random topology. The dashed lines
describe the 10-functional networks. The small peaks of the Cayley
tree curve for ¢ =10 (thick dashed) are replaced in random networks
by relatively more pronounced peaks closer to the central peak. (b)
The cumulative distributions G{X) of frequencies, shown on a log-log
scale. Thin solid line on the left refers to random trifunctional net-
work. A power law of the form G(A) ~ A''! is found for the trifunc-
tional random network. The thick line, for trifunctional Cayley tree,
yields an exponent of 1.4. Results for the 10-functional networks are
displayed by the dashed lines. Both topologies exhibit a sharp increase
at the frequency value equal to functionality. The thin dashed lines
indicate the occurrence of a relatively smoother increase preceding and
succeeding the abrupt jump in the case of random topologies

networks (thin lines). The peaks of the spectrum
for the Cayley topology are derivable from the
closed form expressions given before. The spectra
for the trifunctional random networks are similar
to those of the Cayley trees, except for the
smoother distribution of frequencies in the former
case, as expected from the irregularity of the chain
connectivities in the random network topology.
For the random 10-functional networks, the smal-
ler peaks which are next to the central one in Cay-
ley topology come closer to the main peak, whereas
those which are further away from the central peak
disappear.

The cumulative distributions G(A) of modes for
the same networks are shown in Figure 4b in log—
log form. Thick and thin curves refer to the Cayley
tree and random topologies. Results of calculations
for a three and ten functional network are shown.
The initial slopes of the curves for the trifunctional
Cayley tree and random topologies are §=1.4 and
1.1, respectively, indicating a power law of the
form G(A) ~AP throughout a broad range of the
spectrum. For a three dimensional regular crystal
structure, the exponent g is around 3, while for
native proteins it varies in the range 1.5 < 8 <
2.0'3-16 The latter are characterized by an average
functionality of seven. As the functionality of the
networks increases, a stronger dependence on fre-
quency (higher 8) is observed. For the 10-func-
tional networks, for example, a very sharp,
anomalous increase is observed in the distributions
both for Cayley tree and random topologies. The
smaller peaks of Figure 4a contribute to the initial
and the final stages of the cumulative distribution
in Figure 4b.

CONCLUSION

These results indicate that the polymer micro-
network structures exhibit unique vibrational
characteristics strongly dependent on: (i) local
packing density, expressed here by the junction
functionalities; and (ii) topology, represented by
the distribution or types of junctions: the Cayley
tree represents one extreme topology in which only
chains close along a given path are associated via
junctions. In the random network topology, how-
ever, chains far apart along a given path may
equally be connected at a given junction, and these
long-range associations may have a drastic effect
on the overall vibrational dynamics, as illustrated
in Figure 2. Eigenvalues at the lower end of the
spectrum for random micronetworks are smaller
than those for the Cayley tree. Knowing that the
free energy is linearly proportional to the smallest
cigenvalue'* the modulus of elasticity for random
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networks will be lower than that for the Cayley
networks. The question of whether these results
obtained for micronetworks can be scaled to those
for macronetworks would be very challenging.
The introduction of the topology of structure
into the analysis, as carried out in the present
work, may have far reaching applications in the
field of condensed matter exhibiting large-scale
fluctuations. Proteins in the native state form a
good example. A macromolecular protein generally
consists of 100-1000 amino acid side groups, or
residues. In the native state, the residues are
packed in an irregular crystalline order. The resi-
dues exhibit large amplitude fluctuations about
their equilibrium configurations in the native state.
The analogy to the Gaussian network is obvious.
Each residue may be likened to a junction. The
coordination number of each residue is analogous
to the junction functionality of the network. The
topology of the network is analogous to tertiary
contacts in folded protein structures. Considering
the analogies stated earlier, the statistical mechan-
ics and dynamics of Gaussian networks have
recently been applied to the analysis of thermal

fluctuations of various native proteins!>!3,
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