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ABSTRACT: The Doi theory (J.  Polym. Sci., Polym. Phys. Ed. 1981,19, 229) of concentrated solutions of 
rodlike particles is compared with the recent treatment of Bahar and Erman (J .  Polym. Sci., Polym. Phys. 
Ed. 1986,24,1361) of the lattice theory of rods in a potential flow field. The Doi theory is modified by introducing 
a flow term to its effective mean-field potential, similar to that of the lattice treatment. Results of calculations 
based on the modified Doi theory are in agreement with existing viscosity concentration data on a-helical 
poly(benzylg1utamate) in m-cresol. At relatively low shear rates, the experimentally observed sharp maximum 
in viscosity is found to be located in the biphasic region. In this region the orientational order parameter 
and viscosity are double-valued. The characteristic features of the biphasic regime predicted by the theory 
are discussed. The viscosity-concentration curves exhibit smoother maxima at higher shear rates, although 
no phase separation is predicted by the theory. As the flow rate is further increased, the maximum gradually 
disappears in agreement with experiments. Also, the experimentally observed Newtonian plateau in the plots 
of viscosity against shear rates is obtained by the theory. Quantitative agreement between theory and experiment 
fails at high shear rates. 

Introduction 
Equilibrium statistics of solutions of rodlike particles 

have been formulated by Onsager,’ Isihara,2 and F10ry.~ 
These theories show that a solution of rodlike polymers 
separates into an isotropic and an anisotropic phase above 
a critical concentration, u * ~ ,  depending on the axial ratio 
of the molecules. The presence of a critical concentration 
results solely from the effects of steric repulsions between 
the rodlike solute particles. It was also shown by theory3 
that a t  a higher concentration uZA, the isotropic phase 
becomes unstable and the solution becomes completely 
anisotropic. The treatment of the problem according to 
lattice statistics by Flory has been improved4 where dis- 
tribution of orientations of rods are calculated rigorously 
and the effects of thermotropic interactions5 are included. 
The basic predictions of the equilibrium theory lead to the 
following relations between u * ~ ,  uZA, and the axial ratio, 
x ,  of rods 

8 
u*Z = -(1 - B / x )  uZA = 11 .6 /~  

X 

which are in qualitative agreement with results of various 
experiments on solutions of a-helical poly(y-benzy1-L- 
glutamate) in different 

The concentrations u * ~  and u~~ may be determined by 
steady flow viscosity measurements. Results of experi- 
ments in this field have critically been discussed by 
Matheson12 where it is deduced that the maximum in the 

viscosity-concentration diagram should lie between u * ~  and 

The equilibrium lattice treatment of Flory3 has been 
modified by Marrucci and Ciferri13 by superposing a flow 
potential on the Gibbs free energy of the quiescent solu- 
tion. Their analysis have recently been improved by Bahar 
and Erman14 by adopting the more recent lattice treat- 
ment4 of Flory and Ronca. It has thus been possible to 
extend the statistical theory for quiescent solutions to 
systems in steady-state potential flows for which the 
concentration dependence of flow-induced orientations and 
transitions may be calculated as a function of the imposed 
flow field. 

Dynamics of solutions of rodlike molecules have been 
studied by DoiI5 and Doi and Edwards.la Uncrossability 
of the rods due to steric repulsions, which is the funda- 
mental feature of the lattice treatment, has been incor- 
porated into the kinetic equations governing the behavior 
of rods in concentrated solutions. The theory has later 
been extended by DO?’ to be valid a t  all concentrations. 
In addition to predicting the presence of u * ~  and uZA, the 
theory of Doi provides with a constitutive equation that 
relates the components of the stress tensor to the degree 
of orientation a t  vanishingly small shear rates. When 
solved numerically, the Doi equations may provide a de- 
scription of the rheological behavior of rigid-rod lyotropic 
polymers. An attempt was recently made by Metzner and 
Prilutski’* where predictions of the Doi theory were com- 
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pared with data from a 40% solution of (hydroxy- 
propy1)cellulose (HPC) in acetic acid. The Doi theory was 
subsequently modified by Doraiswamy and MetznerlQ by 
taking into account the dissipation effects of the solvent. 
This increases the number of adjustable parameters from 
three in their previous treatment18 to four and thus allows 
a finer fit with experimental data. 

The Doi theory describes the dynamics of the rods and 
thus can provide information on viscosity, flow relaxations, 
etc ... The lattice treatment on the other hand is derived 
from an equilibrium potential which has been extended 
to include a potential flow. In the present work, we at- 
tempt to identify the resemblances and differences be- 
tween the Doi theory17 and the lattice theory14 of solutions 
of rodlike particles. The Doi theory is then used as a basis 
for relating the shear viscosity to the degree of ordering 
of the solution which is provided by the lattice theory. 
Results of the calculations are compared with two inde- 
pendent sets of experimental data on poly(y-benzy1-L- 
glutamate) (PBLG), the works of Herman@ and Kiss and 
Porter.n The choice of PBLG is motivated by the fact that 
this system is known to be a very rigid helical polymer, and 
its rheology was investigated for several molecular weights. 
It is also one of the few mesomorphic polymers which does 
not show a power-law region at very low shear rates, which 
allows an easier comparison with theory. This does not 
mean that the PBLG solutions are monodomain nematics 
a t  low shear rates. Since, a t  the present time, no theory 
can easily predict the rheological behavior of a textured 
nematic polymer and there is no way to flow a defect-free 
nematic polymer, this comparison is the best that can be 
done. 
Lattice Treatment of Solutions of Rods in 
Potential Flow 

In this section, the free energy of a lyotropic solution 
of rods in steady-state potential flow is reviewed. The 
reader is referred to ref 4 for further details. 

The change in free energy, AG, due to mixing and flow 
of a system of rods in solution is given as 

Rheology of Solutions of Rodlike Polymers 359 

probability for perfect order. The first six terms in eq 2 
follow from the improved lattice treatment of Flory and 
Roncaa4 The last term is due to the flow potential. G is 
related to flow by 

G = CTb2/(kT/[) (5) 

where y denotes the velocity gradient and b is the size of 
a lattice cell which is also identical with the length of a 
rod segment. kT/[ is the diffusion coefficient as defined 
previously.13J4 The constant C equals l / g  for elongational 
flow and 

The orientation distribution function f = nzy/n2 is ob- 
tained by differentiating eq 2 with respect to n2, and 
equating to zero. Thus, 

for pure shear flow. 

AG - = nl In u1 + n2 In 
k T  

G 
n2 In w1 + n2-(x3 + 3x2 + 2x)(sin2 $) (2) 

2 

where k is the Boltzmann constant, T is the absolute 
temperature, nl and n2 are the numbers of solvent and 
solute molecules, u1 and u2 are their respective volume 
fractions, and the angular brackets denote the ensemble 
average. x is the axial ratio of rods which is equal to the 
number of isodiametric segments, each of a size equal to 
that of a lattice cell. The parameter y is defined by 

(3) 

where $ is the angle between the direction of alignment 
imposed by the flow field and the rod axis. Defined in this 
manner, y is referred to as the disorientation index. The 
average 9 is defined as 

y = (4 / I I )x  sin $ 

(4) 
4 

j i  = --x(sin $) = n2-'Cyn2, n Y 

where n2, is the number of solute molecules that assume 
the disorientation index y, with n2 = CYnzyuy is the a priori 
probability for the orientation index y. w1 denotes the 

where abttice = a, + af, with 

4 
11 

(8) 
G 
2 

af = - ( x 3  + 3 x 2  + 2x) sin2 

and 

f n  = S, sinn $ eXPHalattid1 d$ (9) 

The term S represents the average orientation or the order 
parameter defined as 

n/2 
(n  = 1, 2, ... ) 

The Doi Theory and Comparison with the Lattice 
Treatment 

Doi's treatment of solutions of rodlike particles" is based 
on the solution of the generalized form of the kinetic 
equation, i.e., 

df/dt = vu'D,(vd + fVu(YDoi) + vu*uf (11) 

Here u is the unit vector along the rod, D, is the overall 
rotational diffusion coefficient, and Vu is the gradient 
operator with respect to u. f is the orientational distri- 
bution function, expressed in terms of the mean-field po- 
tential kTaDoi as21 

(12) f = f1-' sin 3, exp(aDoi) 

with 

fl = Ln"sin $ exp(aDOi) d$ 

cyDoi reduces the following form for orientation along a given 
axis: 

Here, U is defined17 as a dimensionless parameter pro- 
portional to the concentration and the size of the rods, i.e., 

u = U2XU.2 (15) 
where up is a numerical factor. I t  is clear that the second 
term in eq 14, which is independent of $, wil l be eliminated 
in eq 12, so it may be neglected so far as the distribution 
function is concerned. The mean field potential kTaDoi 
given by eq 14 reflects MaierSaupem type of interactions. 
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The fundamental differences and similarities between 
the lattice treatment and Doi theory may now be identified 
by comparing eq 12-15 with eq 6-9. Expanding the log- 
arithmic term in eq 7 and retaining the first term only we 
obtain 
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(16) n 
This approximation is satisfactory for relatively long rods 
( x  >> 10) whose transitions occur a t  low concentrations. 

On the other hand, substituting eq 15 into eq 14 and 
using eq 10 we obtain the $-dependent term of the Doi 
theory as 

Equations 16 and 17 allow for the direct comparison of 
the two theories. Linear dependence of the two on x and 
up  is an important common feature. The remaining terms, 
although not identical, exhibit similar dependence on $ 
in the interval 0 < $ C II/2. I t  has been pointed out by 
Flory and Ronca6 that the precise form of the orientational 
distribution function is of secondary importance. Calcu- 
lations to be reported below indeed show that the use of 
the potential of eq 17 instead of eq 16 and proper rescaling 
of v2 lead to results similar to those obtained by the lattice 
treatment. 

The effect of the flow field is introduced into the po- 
tential of the lattice treatment through eq 8. 

As the flow rates increase, the term given by eq 8 starts 
to gain importance relative to the static term in the po- 
tential. In the present study we assume that while the 
form of the stress constitutive equation given by Doi re- 
mains the same, the effective potential becomes modified 
by the addition of the flow term. 

The governing equations resulting from these modifi- 
cations may be summarized as follows. 

(i) The orientational distribution function, the mean- 
field potential, and the order parameter: The orientational 
distribution function is given by the equation 

f = f1-' sin # exp(-cy) (18) 

where f l  follows from the general expression 

f,, = Jn"sin" # exp(-a) dJ/ 

The symbol cy in eq 18 and 19 is defined as a = af + a D o i  
which leads to 

+ 3x2 + 2x) + vSxu2 

Here G retains its previous definition, v = 9v2/4, and the 
order parameter is calculated from eq 10. 

(ii) Relationship of viscosity to orientation: For simple 
shear flow, the viscosity 7 is given by the Doi theory as 

7 =  
7 & , ~ ~ ~ ( 1  - S)*(1 + S)2(i + 2s)(1 + 3S/2)(i + s p 2  

(21) 

where qo is a phenomenological front factor. 
Equations 18-21 may be used to obtain relations be- 

tween S, G, u2, and 7. The order parameter S given by eq 
10 has to be evaluated in a self-consistent manner by using 
the potential of eq 20 which also contains S. In general 
few iterations are sufficient to obtain convergence. 

Equation 21 is only valid in the linear regime. It means 
that this theory will be able to give quantitative predictions 
up to  the beginning of the shear-thinning region. 

I / 

0 0.04 0.08 0.1 2 

" 2  

Figure 1. Dependence of the order parameter S on the volume 
fraction v 2  of rodlike polymers. Solid curves are calculated for 
different flow parameters, G, by the present treatment (eq 18-20), 
with v = 0.9 and x = 100. The corresponding curves obtainedI4 
by the lattice treatment are shown by the dashed lines. 

Numerical Calculations and Comparison with 
Experimental Data 

In order to compare the theory presented by eq 18-21 
with experimental data, three parameters G, v, and qo have 
to be specified. They are not arbitrary. It is seen from 
eq 5 that G is a known function of the type of flow, flow 
rate, segment size, and the solute diffusion coefficient. The 
second parameter reflects the characteristics of a given 
polymer-solvent system. At vanishingly small shear rates 
it is the only parameter that determines the complete 
phase transition characteristics of the system. In fact, 
suitable choice of v leads to the appearance of a new highly 
anisotropic phase at the critical concentration u * ~  predicted 
by eq 1. vo is a scaling factor required to match the ex- 
perimentally observed viscosity values with those obtained 
by theory. 

Results of calculations of S for various values of G are 
presented in Figure 1 as a function of volume fraction of 
rods. Calculations are performed for an axial ratio of 100. 
Solid lines represent results obtained by using the potential 
given by eq 20. v in chosen as 0.9. This value is seen to 
lead to values of u * ~  that are in agreement with previous 
 calculation^^^^^^^ and experimental data of Hermam6 The 
curves exhibit all features observed in real systems. At low 
values of u2, S is somewhat sensitive to variations in G. 
There is an interval of u2 (approximately between 0.05 and 
0.08) where the order parameter increases sharply with u2. 
At higher concentrations, the curves obtained for different 
values of G converge to the same S. The rapidly increasing 
part of the curves corresponds to the onset of the increase 
in viscosity observed experimentally as shown in the fol- 
lowing. The dotted curves are results obtained by the 
lattice theory14 for x = 100. There is no adjustable pa- 
rameter in the lattice theory. Similarity of the two sets 
of curves both in shape and in location along the y 2  axis 
results from the fundamental agreement between the 
lattice and the Doi theories in this concentration range. 
The only free parameter to bring the two results into close 
proximity is the parameter v of the Doi theory. 

The relationship between steady shear viscosity and 
concentration is presented by the curves in Figure 3. 
Calculations are performed with the same parameters as 
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Figure 2. Dependence of viscosity on shear rate for various 
concentrations. Volume fractions u2 are indicated on each curve. 
Circles represent data from experiments of Kiss and Porter.22 The 
curves are calculated by the present theory (eq 18-21) for x = 
67, v = 1.1, and vo = 2.2 X lo4 and the shear rate is i. = 2.8 x 
107 G. 

Figure 2. Filled and empty circles represent results of 
steady shear experiments of Kiss and Porterz2 on solutions 
of PBLG in m-cresol with x = 67. The weight fractions 
c reported in their work have been converted to volume 
fractions by using c = 1 . 3 ~ ~  The data for the uppermost 
curve which were obtainedz2 for zero-shear rate are ap- 
proximated by taking + = 1 s-l. This is a plausible ap- 
proximation since in the flow regime with i. < 1 s-l, the 
viscosity values are insensitive to changes in 9 but are 
mainly dominated by the static (equilibrium) contribution 
(YD,,~ to a. The locations and magnitudes of the experi- 
mentally observed peaks are well represented by the the- 
ory. Although this theory cannot give quantitative in- 
formation in the shear-thinning region, it agrees qualita- 
tively with the experiments. That the peak should vanish 
for high shear rates is predicted by the lowest line. The 
shift of the peaks to smaller concentrations with increasing 
shear rate is also predicted by the theory. This observation 
has also been discussed by Doi and Edwardsz3 in relation 
to nonlinear viscoelasticity in nematics. Comparison of 
the reported values of p with the values of G required for 
agreement with Kiss and Porter's data show that 

(22) 

where 9 is in reciprocal seconds. 
Taking b = 15.6 A as deduced from X-ray determination 

of the unit cellz4 and c = 1/6 in eq 5 and comparing with 
eq 22 lead to a value of about lo-' cmz/s for the diffusion 
coefficient, kT/& It  should be pointed out here that the 
state of flow in cone-and-plate experiments of Kiss and 
Porter is simple shear whereas the factor of 1/6 in eq 5 is 
obtained for pure shear, where the vorticity term is zero. 
The effect of this difference on viscosity is expected to be 
inconsequential at lower shear rates (see sequel). The 
dashed portion of the curve for y = 1 corresponds to the 
biphasic region. The order parameter and viscosity, ob- 
tained from eq 10 and 21, respectively, are double-valued 
when the system is biphasic. Details of calculations that 
lead to the biphasic region in Figure 3 are discussed below. 
It  is worth noting that no biphasic region is observed in 
the remaining curves of Figure 3. 

G = y12.8 x 107 

"2 

Figure 3. Change in the viscosity of the solution with volume 
fraction of rodlike polymers. The curves are calculated by the 
present treatment by using the same parameters as in Figure 2. 
Circles represent data from Kiss and Porter.z The dashed portion 
of the uppermost curve represents the biphasic region. The shear 
rate is indicated on each curve. 

The dependence of viscosity on shear rate i, is presented 
in Figure 2 for various concentrations. Calculations are 
performed according to eq 18-21 for x = 67, u = 1.1, qo = 
2.2 X lo*. Filled cirgles represent experimental data of 
Kiss and Porter of PBLG withzS x = 67. Percentages of 
concentrations expressed in volume fractions are shown 
on each curve. The plateau region and the onset of the 
decline of viscosity with are predicted satisfactorily by 
the theory. The viscosity-shear rate curves cross each 
other if presented on the same graph which is also verified 
by the theory. The failure of the theory at high shear rates 
is due to the use of eq 21, only valid in the linear regime. 

Predictions of the theory are compared in Figure 4 with 
results of viscosity experiments on PBLG by Hermam6 
The ordinate represents the viscosity. The abscissa is the 
volume fraction of rods. Results for PBLG in m-cresol, 
with molecular weight 342000 ( x  = 150), are shown by 
filled circles. Data for molecular weight 220 000 ( x  = 97) 
are given by the empty circles. Parameters used in the 
theory are v = 0.8 and qo = 0.66 X lo*. Differences in qo 
for Kiss and Porter and Hermans data may be attributed 
to polydispersity effects. In Figure 4, only two sets of 
experiments are compared with theory. A third set with 
x = 120 is not included because the peak value of q for x 
= 120 is larger than those for x = 97 and 150. The pre- 
dictions of the theory indicate, however, that the peak 
viscosity should be monotone, strictly increasing with rod 
length. 

The order parameter and viscosity in and around the 
biphasic region are shown in more detail in Figures 5-7. 
The biphasic region is the region in which S and q are 
double-valued. The concentrations u * ~  and v2* defining 
the boundary depend on the flow parameter, G. In Figure 
5 this boundary is shown for a system with x = 67, v = 1.1. 
The flow parameter G is plotted against the volume 
fraction of rodlike polymers. The area bounded by the 
curve is the biphasic region. Outside this boundary, the 
system is single phase, with different degrees of anisotropy 
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The location of the maxima of viscosity is adjusted by 
the parameter v. u was found to be in the range 0.8-1.1 
for the molecular weights we used. I t  is possible to cal- 
culate v from the equilibrium properties of the solution. 
At  the concentration v * ~ ,  when the phase separation occurs, 
Doi theory predicts that v = 3 n / 4 x ~ * ~ .  This gives u in the 
range 0.6-0.8, which is very close to the values found by 
fitting the experimental data with the theory. 

The experimentally observed shifting of the viscosity 
peaks to lower concentrations as the flow rate increases 
is predicted by the theory. 

At low shear rates the increasing parts of the viscosity 
versus concentration curves almost coincide with experi- 
mental data as seen in Figures 3 and 4. 

The theory predicts the Newtonian plateau preceding 
the decrease of 7 with q, in satisfactory agreement with 
experimental findings as shown in Figure 2 for different 
values of uz. As stated above, the theory fails in the 
shear-thinning region due to the use of eq 21. 

In addition to the use of eq 21, the failure of the theory 
at  high shear rates may be due to the fact that the theory 
is developed for pure shear whereas the experimental data 
are obtained under simple shear conditions. The two differ 
by the vorticity component which is present in the latter. 
The effect of the vorticity component is expected to be 
insignificant at  rates which are much lower than the ro- 
tational diffusion of the rods. Satisfactory agreement of 
the present formulation with experimental data a t  low 
shear rates is an indication along this direction. However, 
a conclusive understanding of the differences between pure 
and simple shear flows in relation to molecular phenomena 
awaits further experimental work. 

The strong dependence of the viscosity expression on 
rod length invites attention to effects that may arise from 
polydispersity and nonrigidity. Different values of qo re- 
quired to describe the experiments of Hermans and Kiss 
and Porter may be ascribed to effects of polydispersity. 
The effects of nonrigidity of rods may be equally important 
as those of polydispersity. Comparison of a set of datag 
from solutions of poly(benzylg1utamate) containing 50% 
D peptide units and 50% L units leads to results incom- 
patible with those for solutions containing 100% L units. 
Application of the present theory to solutions of HPC, for 
example, should be made with care inasmuch as this sys- 
tem is not a good example of a rigid polymer, and its degree 
of substitution is not r e g ~ l a r . ~ ~ ? ~ '  

Although an estimate of the value of to may be made 
by employing the molecular theory of Doi and Edwards, 
we presently do not pursue it due to the fact that while 
the Doi-Edwards theory is qualitatively correct, the pre- 
dicted magnitudes of its parameters do not agree with 
experimental data.2sp29 One indication along these lines 
is observed in the work of Zero and Pecora2* where the 
value of the rotational diffusion coefficient of PBLG is 
obtained to be 2 orders of magnitude higher than that 
predicted by the Doi-Edwards theory. 

The boundary of the biphasic region is similar in shape 
to that of the lattice treatment.14 However, the biphasic 
gap under flow is rather narrow in contrast to the pre- 
dictions of lattice theory, but in agreement with Doi's static 
theory of phase transition. However, the disagreement 
between the two theories as to the width of the biphasic 
gap is inconsequential in determining rheological proper- 
ties. In fact as pointed out previously,'l the coexisting 
phases are distinguished more markedly by their degree 
of ordering than by the difference in their concentrations. 

In the biphasic regime both the order parameter and 
consequently the viscosity are double-valued. The relative 

L 
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- 
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Figure 4. Change in viscosity with concentration for two axial 
ratios n, shown on each curve. Curves are calculated for zero shear 
rate, by using the parameters Y = 0.8 and vo = 0.66 X lo4. Circles 
represent experimental data from the work of Hermam6 

depending on the value of G and u2. The parameters used 
in obtaining the boundary of the biphasic region of Figure 
5 correspond to those used to reproduce the data of Kiss 
and Porter shown in Figure 2. I t  is thus concluded from 
Figure 2 that the system used by Kiss and Porter enters 
the biphasic regime only for the curve with i. = 1, while 
the curves for i. = 10 and 100 correspond to a single an- 
isotropic phase with degree of anisotropy increasing with 
i. and u2. 

The relationship of the order parameter to concentration 
is shown in Figure 6. The two vertical dashed lines sep- 
arate the biphasic region from those of low anisotropy on 
the left and those of high anisotropy on the right. 

The order parameter in the low-anisotropy region is very 
close to zero; i.e., the system is almost isotropic. Thus this 
phase may be referred to as the isotropic phase to a good 
approximation. Values of q calculated around and in the 
biphasic region are given in Figure 7. The viscosity of the 
disordered, isotropic phase is considerably higher than that 
of the highly anisotropic phase. The dashed curve rep- 
resents the mean viscosity of the biphasic system obtained 
by weighting the viscosities of the two phases with their 
respective volume fractions in the mixture. The dot- 
dashed curve is drawn by assuming a phase inversion that 
occurs a t  the mean of u * ~  and u2*. The viscosity of the 
heterogeneous system is assumed to be determined by that 
of the isotropic phase until phase inversion after which the 
situation is reversed; i.e., the viscosity of the anisotropic 
phase dominates. The dashed portion of the uppermost 
curve in Figure 3 corresponds to this dot-dashed curve. 

Discussion and Conclusions 
Modification of the Doi theory by introducing a flow 

term into the effective potential of lyotropic liquid-crys- 
talline systems leads to results which are in quantitative 
agreement with various aspects of experimental data over 
a wide range of flow rates. Several remarks follow from 
the present treatment. 
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Figure 5. Biphasic region in solutions of rodlike polymers under 
flow for x = 67 and v = 1.1. The region bounded by the curve 
represents the biphasic system with double-valued order param- 
eter S. In the region outside the curve, the system is single-phased 
with degree of anisotropy increasing with G and v2. 
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Figure 6. Variation of the order parameter S with volume fraction 
u2 of rods in and about the biphasic region, limited by the vertical 
dashed lines. The same parameters as in Figures 2 and 3 are used 
with + = 1. The lower curve corresponds to the weakly ordered 
almost isotropic phase. The upper one exhibits the behavior of 
the highly anisotropic phase. The order parameter is double- 
valued in the biphasic region. 

contributions of the two phases to the overall viscosity of 
the biphasic solution are not well defined at the present. 
It should be added that the present mean-field treatment 
is not expected to predict the phenomena in the biphasic 
region in the presence of flow. Possibility of dynamic 
instabilities would prevent the application of the present 
theory to the biphasic region. In view of these difficulties, 
the biphasic region in Figure 3 is presented by dotted lines, 
and the discussion pertaining to Figures 6 and 7 should 
be regarded only as exploratory. 

Finally, it should be pointed out that at  vanishingly low 
shear rates, most of the main-chain nematic polymers, 
thermotropic or in solution, do not present a newtonian 
plateau but have a power-law region. This is supposed to 

0 
0.09 0.10 

"2 

Figure 7. Variation of the viscosity with concentration in and 
about the biphasic region. The upper curve on the left stands 
for the phase with low anisotropy while the lower one is repre- 
sentative of the highly ordered anisotropic phase. In the inter- 
mediate biphasic region, the viscosities are double-valued. The 
dashed curve is drawn by weighting the viscosities in each phase 
by their respective volume fractions. The dot-dashed curve is 
drawn on the basis of a phase inversion occurring at the midpoint 
of the concentration interval. 

be due to the presence of a certain structure30 present in 
the nematic phase. This problem is not addressed in the 
present theory. 

Registry No. PBLG (homopolymer), 25014-27-1; PBLG 
(SRU), 25038-53-3. 
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ABSTRACT By manipulation of the alkalinity during (carboxymethy1)cellulose (CMC) preparation-aiming 
at the formation of poorly substituted segments, in fact at a cellulose-co-CMC segmented block co- 
polymer-CMCs can be made with solution rheograms closely resembling those of xanthan gum. Such results 
were obtained by reacting both in an aqueous isopropyl alcohol slurry and in a “dry” phase with use of a kneader. 
Some salt resistance can be achieved, although not on the level that it can with xanthan gum. The new products 
show a temperature dependence of solution viscosity comparable with that of xanthan gum but do not show 
the discontinuity at 60 “C that is characteristic of xanthan gum.6 

Introduction 
The extreme pseudoplasticity of xanthan gum solutions 

has long served as both a yardstick of performance for 
other water-soluble polymers and as an unattainable ideal 
for semisynthetic cellulose derivatives.l Earlier work in- 
vestigating the effect of oligosaccharide substituents 
flexibly coupled to a CMC backbone in a random sub- 
stitution pattern-presenting a “random analogue” of 
xanthan gum’s highly regular cellulose-graft-oligosac- 
charide structure-failed to  produce unusual rheologies, 
although a very high level of viscosity was attained, nor- 
malized to 1 % cellulosic solutions.2 

Literature reports3 that xanthan gum is organized into 
multistranded helical aggregates, forming fairly rigid, ex- 
tremely long arrays, not unlike staple fiber yarn being built 
up from short fibers, inspired the approach described in 
this work. We aimed at the synthesis of CMC types that 
contain “cellulose blocks” consisting of segments of poorly 
substituted CMC, which would act as physical cross-links 
in the solution, to produce multistranded CMC colloidal 
fibers. Such a conjugation of CMC molecules via cellu- 
lose-like segments would tend to align the relatively rigid4 
cellulose derivative into bundles with an effective length 
far exceeding the individual molecular dimensions. This 
would lead to a strong increase of shear-thinning behavior 
due to increased orientability of such colloidal fibers, 
compared with the isolated molecules. 

Res u 1 t s 

Our synthesis follows the same general outline as the 
preparation of regular CMC: Alkalization to open up the 
cellulose structure as well as to generate high nucleophilic 
reactivity, followed by reaction with chloroacetic acid or 
ita derivatives. 

We open the cellulose structure by using an amount of 
alkali in the usual range, normally regarded sufficient to 
destroy all crystallinity: then, just prior to the s ta r t  of the 
carboxymethylation reaction, we adust the alkalinity to 
a much lower range, inviting incipient recrystallization. 
The microcrystals locally protect the cellulose from sub- 
stitution reactions; the unsubstituted regions furnish the 
poorly substituted “cellulose blocks” in the block-co- 

Table I 
CMC-Cellulose Segmented Block Copolymers from 

Reaction of Linters Cellulose“ 
MCA, MCA-Na, q18-i, q20s-~, 

entry equiv equiv mPa-s mPa.s 1OOB 
1 0 1.0 1250 700 23 
2 0.3 0.7 1750 880 35 
3 0.5 0.5 1920 880 35 
4 0.7 0.3 5920 1600 47 
5 0.7 0.3 6750 1980 47* 
6* 0.7 0.3 30200 4700 68 
7* 0.7 0.3 23600 4200 63c 
7* 0.75 wt ’70 s o h  13300 2460 61 
7* 0.50 wt ‘70 soln 3800 1100 52 
8 0 1.4 1810 650 40 
9 0.1 1.3 1410 690 3Fjd 
10 0.2 1.2 2800 1060 22 
11 0.4 1.0 insol 
various >0.4 <1.0 insol 
1.0% xanthan gum 2800 70 
AZC HS600e 149 77 22 
“ER 4500; runs marked with * ER 8500, milled in the Pulveri- 

sette, with 1.5 equiv of NaOH (equivalents always relative to  an- 
hydroglucose) in 87% aqueous isopropyl alcohol and with various 
amounts of chloroacetic acid and sodium chloroacetate. Viscosity 
data for 1% solids unless indicated otherwise in all tables. Pseu- 
doplasticity characterized by the factor B (log T = A - B log ?); the 
mean value of B in the slightly curved plots between 10 and 100 5-l 
shear rate is reported, cf. ref 6.  *Run 5 checks the reproducibility 
of run 4. eRun 7 reproduces run 6. dObserve salt effect. ‘Cf. 
Table V. 

polymer-like product. Chloroacetic acid can be used for 
the partial neutralization if the temperature of the mixture 
is sufficiently low to preclude intervention of the etheri- 
fication reaction in the neutralization step-i.e., below 
room temperature. 

In searching for a good procedure to achieve soluble 
products containing segments of poorly substituted cellu- 
lose (Table I) we observed a pronounced salt effect on the 
collapse of the alkali cellulose structure (bottom part of 
Table I). Note that salt is expected to exert its effect in 
a less homogeneous and reproducible manner than pH 
control should, because of slow salt diffusion compared to 
the rate of proton exchange. Thus, in striving for a higher 
overall degree of substitution (DS), the use of increased 
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