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ABSTRACT: Conformational dynamics of short probes dispersed in a matrix is investigated. The matrix 
can be in two states, fast or slow, depending on the amount of free volume. Following the work of Anderson 
and Ullman,4 the amount of free volume is assumed to fluctuate in time, thus modifying the states of the 
matrix. The probe undergoes transitions between two states resembling trans-cis isomeric transitions. 
Correlation times of the probe-matrix system exhibit a clear transition as the free-volume fluctuations of 
the matrix become faster. In a fast matrix, the temperature dependence of correlation times for probes reflects 
both the intramolecular conformational barrier in the probe and the energy change of viscous origin in the 
matrix, while in a slow matrix only the activation energy of the matrix is observed. This is in agreement 
with the results from recent experiments with fluorescent probes dissolved in small-molecule solvents and 
in bulk polymer. 

Introduction 
Intramolecular excimer formation in fluorescent probe 

molecules has been shown to give information about the 
dynamics of the environment in which they are dispersed 
in small quantities.l A large body of experimental work 
confirms the efficiency of this technique in understanding 
the dynamics of various size molecules, ranging from small 
solvent molecules to polymers in the bulk state. 

In general, the internal reorientation of the probe is 
opposed both by intramolecular conformational barriers 
and by intermolecular resistance of viscous origin. In fact, 
in a matrix of small or oligomeric molecules, the activation 
energy for the motion of the probe is observed from 
experiments to be equal to the sum of (i) the activation 
energy for intramolecular rotameric transitions of the probe 
and (ii)  the one associated with the viscosity of the 
environment.2 For probes dispersed in a bulk polymer, 
however, the temperature dependence of the probe motion 
is characteristic of the surrounding medium only; i.e., the 
mobility of the bulk polymer is the factor almost totally 
controlling the motion of the probe. The specific aim of 
the present paper is to investigate, theoretically, the cause 
of this change in the observed activation energies or in the 
extent of probe-matrix coupling depending on the mobility 
of the surroundings. 

A first description of a coupling of this nature is given 
by the defect diffusion model of G l a r ~ m . ~  The model 
describes the cooperativity between an orienting molecule 
and its environment. The orientation of the molecule is 
more likely immediately after one of its neighbors relaxes. 
The relaxing neighbor is treated as a defect that  may 

diffuse toward the reorienting molecule. The diffusion 
coefficient associated with the motion of the defect 
describes the mobility of the environment. The defect 
diffusion model was further explored, in a more refined 
way, by Anderson and Ullman4 According to this model, 
the environment about each molecule is taken to fluctuate 
with time. These fluctuations are assumed to critically 
affect the reorientation probabilities of the molecule. The 
fluctuations of the environment are associated with 
fluctuations of free volume. The work of Anderson and 
Ullman is the first rigorous attempt in establishing the 
dynamic nature of the free-volume effect in intermolec- 
ular correlations. The concept of a fluctuating environment 
was further treated by Anderson5 in terms of a “simple 
defect” model. According to this model, the environment 
of a given molecule can be in either of two states. One 
of the states is “unyielding”. A molecule in this state has 
a small probability of reorientation. The second state 
constitutes a defect in which the molecule has a high 
probability of reorienting. The motion of the molecule may 
in its most general form be described in terms of the well- 
known Ornstein-Uhlenbeck process as shown by Anderson 
and Ullman. A similar treatment has been employed by 
Sillescus as well, in describing magnetic spin resonance line 
shapes in liquids with molecular reorientation. In the 
present study, we reconsider the dynamics of a probe 
molecule by solving the master equation for a rotational 
jump model in which the rates of internal transitions of 
the probe molecule depend on the state of its immediate 
surrounding. The formulation though less formal than that 
of Anderson-Ullman and Sillescu helps for a clear 
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Figure 1. Schematic representation of the isomeric states t and 
c for a central bond BC in a probe molecule. 
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Figure 2. Hypothetical sequence of isomeric transitions (part 
c) coupled to the changes in environment (part a). Part b shows 
the transition rate constants prevailing in the slow and fast 
environments. 

understanding of probe-matrix coupling behavior in 
general. 

The Model and Basic Assumptions 

In the interest of simplifying the discussion, we first 
investigate the internal dynamics of a two-state bond and 
its coupling with the environment, which we call the matrix. 
The bond in question belongs to a probe molecule, which 
undergoes conformational transitions. Such transitions 
are responsible for experimentally observable responses 
such as excimer emission following the excitation of a bi- 
chromophoric molecule. In Figure 1, two states of an 
investigated central bond BC are shown. Depending on 
the isomeric state of bond BC, the relative position and 
orientation of the adjacent bonds AB and CD change. The 
state resembling the trans state of a real bond will be called 
the t state, and the one resembling the cis state will be 
called the c state. 

Following the work of Anderson? the surroundings are 
assumed to exist in two distinct states, which we refer to 
as the  fast  ( f )  and the  slow (s )  states.  The  term 
surroundings is employed in a restricted sense to indicate 
the near neighborhood of the probe or of the associated 
moving sequence. The rates of isomeric transitions are 
affected by the state of the surroundings. The forward 
and reverse passages from t to c are governed by the 
respective rate constants rl and r2  in the slow environment 
and by r3 and r4 in the fast environment. A clear scheme 
described by Anderson is shown in Figure 2. Parts a and 
b in the figure illustrate the change with time in the 
environment of probe and in the prevailing rate constants. 

Figure 3. Kinetic scheme for the transitions between the joint 
states st, sc, ft, and fc. Here s and f refer to the slow and fast 
states of the matrix. 

The accompanying reorientation of the probe is shown in 
part c. The latter corresponds to the extreme case where 
the reorientation is presumed impossible whenever the 
probe is in the slow (s) environment. To keep the 
generality, we will assume that conformational transitions 
are possible in the slow environment; i.e., r1 and r2 are 
different from zero. However, bearing in mind that the 
probe reorientation is possible only if sufficient free volume 
is supplied by the surroundings, the rate constants rl and 
r2 of conformational transitions in the slow medium are 
assumed to be bounded above by the rate of fluctuations 
of free volume in the matrix. The latter are represented 
by the rate constants r5 and r6 of passages between the 
fast and slow states. 

For the two-state bond and the two-state matrix system, 
the dynamics may be described in terms of transitions 
among the four joint states, st, sc, ft, and fc. A schematic 
description of these transitions is shown in Figure 3, where 
the various ri denote the rate constants associated with 
the transitions between the four states. No transition is 
assumed to take place between the sc and ft  states and 
st  and fc states. The transitions between slow and fast 
matrices (r5,rg) are taken to be independent of the states 
of the bond, based on the assumption4 that the fluctuations 
of the matrix are independent of the conformational 
transitions of the probe. For stationary systems where the 
principle of detailed balance holds, we have 

(1) 
where pfc, p ~ ,  psc, and pst are the equilibrium probabilities 
of the states fc, ft, sc, and st, respectively. Similar identities 
of the form 

r5Ir6 = PiClPSC = PrtlPst 

r1Ir2 = PscIPst 
rdr1 = PfClPft (2) 

may be written for the rotameric transitions. The eqs 1 
and 2 imply that 

(3) r1Ir2 = d r . 4  = PcIPt 
where the equilibrium probabilities pt  and p c  for the t and 
c states are given by 

Pt = Pft + Pst 
Pc = Pfc + Psc (4) 

Equation 3 states that the conformational probabilities for 
the probe remain unaffected by the environment. The 
forward and reverse rates between t and c states preserve 
the same ratio in different media, but their absolute values 
are modified depending on the state (s,f) of the matrix. 
The coupling with the matrix, if any, will be in the direction 
of slowing down of the rates of conformational transitions 
that would occur in the absence of environmental effects. 
In the limit of negligibly small environmental resistance, 
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Le., very fast matrix, r3 and r4 assume their maximum 
values dictated by the probe conformational energetics. 

The consideration of the joint statistics of the bond- 
matrix system and the identification of the different states 
of the matrix leads to a more detailed description of the 
orientational dynamics of the bonds compared to the 
previous work7 in which a mean-field approach, inherently 
present in Kramers' rate type expression,8 was adopted 
for the effect of the environment on the isomeric transition 
rates. 

Extension of the present discussion to the case of a larger 
number of reorienting bonds is straighforward, as shown 
in the Appendix. Also, the theory may be adapted to more 
than two states accessible to the bond and to the matrix 
by suitable redefinition of the kinetic scheme of the model. 

Rate Constants. The rate constants associated with 
the probe isomeric rotations are suitably described by the 
Kramers' expression in a high-friction medium8 
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replacing f i .  As a first approximation one may assume a 
linear increase of f  with temperature; i.e. 

(11) 
where fo  is the fractional free volume a t  the reference 
temperature, TO, and af is the thermal expansion Coefficient 
of the fractional free volume. Equations 10 and 11 may 
be combined in r5 - g to yield 

7 = f o  + af(T- 7'0) 

(5 )  

where y and y* are the curvatures of the rotational energy 
surface a t  the mimima and maxima, { is the friction 
coefficient, and E is the energy to be surmounted in going 
from one rotational state to the other. s2 represents the 
sum of the squares of the paths travelled by the atoms of 
the molecule during the transition. In probes where the 
transition takes place over a single bond, s2 may be chosen 
as a coefficient of proportionality. In probes exhibiting 
transitions over more than one bond, s2 may take different 
values for each transition. 

The coefficient of friction may be related to the free 
volume by an expression analogous to the one proposed 
by Doolittle for the viscosity9 

In {/kT = In p / k T  - q(1- l/f) (6) 
where f is the fractional free volume and f and p are 
parameters. The substitution of eq 6 into eq 5 leads to a 
rate expression written as the product of an intermolec- 
ular and an intramolecular term 

r = (Ko/50) exp(-E/RT) exp[f( l -  l/f)l (7) 

KO E (yy*)1/2/(2as2) (8) 
Inasmuch as the free volume may be regarded as a 
fluctuating quantity: we can assign to the slow and fast 
environments different values for 5" and f depending on 
the local free volume. We have 

r1 = K,gs exp(-Ec,/RT) 

r2 = K,g8 exp(-E,/RT) 

r3 = K,gf exp(-Ec,/R'T? 

r4 = K,gf exp(-E,/RT) (9) 

(10) 
with i = f or s for t he  slow or fast  environments, 
respectively. Here, Ei, is the intramolecular conforma- 
tional barrier for the passage from state j to state i. Also, 
the diffusive motion of the environment from fast to slow 
regime or vice versa will be described by the rate constants 
r5 and rg. If the simple defect model of Anderson is 
adopted, r5 will obey the proportionality r5 - g where g 
is given by eq 10 with the mean fractional free volume, f ,  

where 

where 

gi = ( l / C i o )  exp[Y(l- l / f i ) I  

r5(n - exp[ ] 
Az+(T-To) 

which may be rearranged as 

with AI = " I f 0  and Az = fo/af. Equation 12 is in form 
identical with the Vogel-Fulcher-Tamman equation, 
whereas eq 13 is in form identical with the WLF equation. 
The same relationship applies for r g .  

Orientational Dynamics. The probabilities of the four 
states are denoted by the vector P( t )  given by 

P( t )  = col [Pst,Psc,Pft,Pfcl (14) 
where col denotes column. The time evolution of P( t )  
follows the master equation 

dP(t)/dt  = A P ( t )  (15) 
where the transition rate matrix A for the system may be 
obtained from the kinetic scheme of Figure 3 as 

st  sc f t  fc 
r6 

fc 1 0 r 5  

The ijth element (i # j) of A is the rate constant for the 
transition from the j t h  state to the ith state. For clarity, 
the four states are indicated above and on the left of the 
matrix. Each diagonal element in A is equal to the negative 
sum of the remaining elements in the corresponding 
column. 

The time-dependent joint probability matrix P( t )  is 
obtained from the solution of eq 15 as7 

(17) 
where B is the matrix of eigenvectors of A, B-' is its 
inverse, A is the diagonal matrix of eigenvalues of A, and 
P(t=O) is the vector of initial probabilities, Pi(O), for state 
i, i = 1-4. For a system where the various probabilities 
Pi(0) are not appreciably perturbed by the measurement 
technique, initial probabilities may be equated to the 
equilibrium probabilities. 

P( t )  = B exp(At)B-' P(t=O) 

The four eigenvalues of A are 

A, = 0 

A, = -a + (a2 - p)'/2 
A2 = -(rg + r6) 

where 
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The two limiting cases where the matrix is very slow and 
very fast compared to the intramolecular transition rates 
r3 and r 4  are of special interest. For simplicity, let us take 
r5 = r6 in both cases. 

(i) For the very fast matrix, with the inequality r5 >> r3, 
r4, the correlation time given by eq 27 reduces to 

P = (rl + r 2 k 3  + r4) + (rl + rZ)r6 + (r3 + r4)r5 (19) 
The zero eigenvalue specifies the equilibrium state of the 
system. The second eigenvalue reflects the dynamics of 
the matrix only. A3 and X4 represent the coupling between 
the bond and the matrix. 

The elements of B may be generated from the following 
relations 

Bii = I 

+ ( r ,  + r3 + r5 + r6)Xi + ~ 1 ~ 4  + ~1r3 + rlr6 + r3r5 
Bzi = 

(r2 + r4)Xi + r2r4 + r4r5 + r2r3 + r2r6 

= ( r l  + r5 + X i  - r$zi)/re 

B4i [ - P I  + (r2 + r5 + Ai)Bzi]/r6 (20) 

[B-'Iij = X i j / Z i  (21) 

The elements of B-l are obtained from 

where 

xi, = 1 

x i2  + ( r ,  + r3 + r5 + r6)hi + ~ 1 ~ 3  + rlr6 + r3r5 + r2r3 
( r l  + r3)Xi + r1r3 + rlr6 + r2r3 + r3r5 

X ,  = ( r ,  + r5 + X i  - r l X i 2 ) / r 5  

xi, = 

X ,  = [-r2 + ( r2  + r5 + Xi)Xi2 ] / r ,  (22) 
and 

4 

zi = 1 + C X i k B k i  
k = 2  

The variables i and j in eqs 20-23 take values from 1 to 
4. 

For the system under consideration, the autocorrela- 
tion function, ( f ( t )  ), for a configuration-dependent variable 
f i j  associated with the transition from the j th  to the ith 
state, is expressed as 

(24) 
n = l  

where 
A d  

The correlation time, T ,  for ( f ( t ) )  is defined as the 
normalized area between the time decay curve for ( f ( t ) )  
and the asymptotic value kl to which it converges a t  long 
times. Thus following the definition 

we obtain by using eqs 24 and 18 

The first term in brackets in eq 27 contains rates for the 
environment or matrix only. For a property f i j ,  which is 
a function of the conformational states (t,c) of the observed 
probe, regardless of the states (f,s) of the matrix, k2 will 
equate to zero and the independent contribution of the 
environment to local chain dynamics will vanish. Only the 
last two terms in eq 27, representing the coupling of the 
probe to the matrix, will be operative. 

2k3 1 .=-[ 1 
1 - k, r ,  + r2 + r3 + r4 

which may be further simplified as 

for r l ,  r2 << r3, r4. 

implies that 
(ii) For the very slow matrix, the inequality r5 << r3,  r4 

T = -[ 1 - 1 k ,  rl + k3 r2 + r5 +A] r3 + r4 (30) 

which automatically reduces to 

(31) 

since r1, r2 I r5, following the assumption delineated in 
the  model. Further  slowing down of free-volume 
fluctuations in a slow environment limits both rl and rz 
such that initially max(rl,r2) and subsequently both of them 
necessarily equate to r5. In this extreme case of the 
exclusively diffusion-controlled regime, the correlation time 
reads 

The resulting equalities 28-32 deserve special attention. 
In the fast matrix limit, the prevailing rate of conforma- 
tional transition is the one dictated by the probe intramo- 
lecular energetics, mainly. The mobility of the matrix does 
not explicitly appear in the observed correlation time (eq 
29). This is expected inasmuch as a fact matrix is identified 
as a near neighborhood, which accommodates the new 
orientation of the probe without significant slowing down 
of the conformational kinetics. This limiting case is 
representative of the internal dynamics of the single- 
probe small-molecule environment. However, eqs 31 and 
32 show that the mobility of the surroundings becomes an 
increasingly important variable prescribing the correlation 
time when the process of reorientation within the matrix 
is slowed down, as in the case of the probes dispersed in 
bulk polymer. 

For cases intermediate between very fast and very slow 
matrices, the expression given by eq 27 shows the joint 
contribution of the matrix and the probe to the observed 
dynamics. 

Numerical Example. Orientational Autocorrela- 
tion Function (OACF). As a numerical example we 
study the relaxation of the first orientational autocorre- 
lation function, M l ( t )  defined as 

Ml(t) = (m(t).m(O)) (33) 
where m is a unit  vector under consideration, the 
arguments t and 0 denoting the time of observation. For 
the simple model shown in Figure 1 ,  with the vector m 
along the bond CD, the term fi, in eq 25 may be identified 
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Figure 4. Change in probe orientational correlation time, T ,  with 
the free-volume fluctuation rates, r6, of the matrix. The curves 
are drawn by using eq 27, with rl = 0.01 and r3 = 10 for the cases 
(a) p ,  - 0, (b) p e  - 1, (c) p s  = 0.5, (d) p s  = 0.1, and (e) p s  = 0.9. 
The t and c states are assumed to be equally probable in all cases. 

with the elements of the following matrix rl -1 1 -q 

L-1 1 -1  lJ 
Here mi refers to the vectorial representation of m when 
bond BC is in state i. Substitution of eq 34 into eq 25 and 
the use of the latter in the right-hand side of eq 24 together 
with the eigenvalues given by eq 18 yield M l ( t ) .  The latter 
is particularly suitable for the description of dielectric 
relaxation, with the vector m identifying the direction of 
the dipole moment under investigation. 

Results of numerical calculations for the correlation time, 
7, of the first OACF are shown in Figure 4 where T-I is 
presented as a function of the rate r5 of the matrix for rl 
= 0.01 and r3 = 10. r5 is varied in the range r5 I rl in 
accordance with the assumption of the model. The curves 
are obtained by using eq 27. Line a is obtained for the 
limit case where the matrix is in the fast state only, Le., 
for ps - 0, while line b is representative of the other 
extreme case where p s  - 1. Curves d, c, and e are drawn 
for the intermediate cases of ps = 0.1, 0.5, and 0.9, 
respectively. In all cases, the t and c states are assumed 
to be equally probable in each matrix, thus leading to the 
equilibrium joint probabilities indicated in the figure 
caption. A smooth crossover from the slow to the fast 
regime is obtained for 117 with an increasing rate r5 of the 
matrix. In the slow regime 1 / ~  increases with the mobility 
of t he  matrix,  whereas in the  fast  regime, 1 / 7  is 
independent of r5 as indicated by the horizontal portions 
of the curves. 

The fast and slow matrix approximations given by eqs 
29 and 31 are compared in Figure 5 with the exact 
calculations from eq 27 for r1 = rz = 0.01, r3 = r 4  = 10, 
and pst = psc = pft = pfc = l/4. The solid curve represents 
the exact results from eq 27. The dashed curve is for the 
slow matrix approximation from eq 31. The dot-dashed 
curve is for the fast matrix approximation from eq 29. 

An alternate definition of the correlation time is givenlo 
as 

7 = -(1 - k l ) / C k i X i  (35) 
Defined in this manner, 7 represents the intersection of 

.01 i 
-3 -1  1 3 5 

1% r5 

Figure 5. Dependence of 7 on r5. The solid curve is identical 
with the curve c in Figure 4. The dashed and dot-dashed curves 
are obtained by using the approximate eqs 31 and 29 for the slow 
and fast iegimes, respectively. 

the initial tangent to the autocorrelation curve with its t 
= m asymptote. If the relaxation process is a single- 
exponential decay process, the two definitions of T given 
by eqs 26 and 35 are identical. For multiexponential decay, 
7 given by eq 35 emphasizes the faster modes of relaxation 
as follows from its definition. With reference to the model 
employed in the present study it is independent of the 
mobility of the environment. In fact, calculations show 
that for all values of r5 it is equal to the upper limit of the 
correlation time predicted by eq 27. For this reason, this 
definition furnishes information on the probe intramo- 
lecular potential only. 

Temperature Dependence. The observed activation 
energy, E,, is defined as 

E, = -RF a In (1/7)/aT (36) 
The latter reduces to simple mathematical expressions in 
the two limiting cases of fast and slow matrices, as 
presented below. 

For fast matrices, eq 29 applies. Differentiation of the 
latter according to eq 36 after substitution of eq 9 for r3 
and r4 yields 

(37) 
assuming r3 = r4. Here a In gf/dT represents the  
temperature dependence of the free volume. It  is given 
by 

E,  = E, + RF a In g,/aT 

for media where linear dependence of uf on T holds. Here 
the overbars on A1 and Az, which were used in eqs 12 and 
13, have been omitted inasmuch as the parameters in eq 
38 correspond to the fast matrix. Alternately, the above 
temperature coefficient may be identified with the en- 
thalpy change, AHq, associated with the temperature 
dependence of the solvent viscosity, q.  In cases where gf 
approaches unity (i.e., a large free volume and/or high rate 
of fluctuations in the matrix), this term vanishes and the 
apparent activation energy equates to that of the intramo- 
lecular conformational transitions. In most cases, however, 
a In gf/aT is of comparable magnitude to the intramo- 
lecular potentials and the contribution of both terms in 
eq 37 is experimentally observed.lJ In the case of meso- 
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the mean friction coefficient and the intramolecular 
potential barrier. In the slow matrix regime, however, the 
confinement of probe transition rates rl and r2 to values 
lower than or equal to the free-volume fluctuation rates, 
leads to eq 31 and ultimately eq 32 where the mobility of 
the matrix governs the dynamics of the probe. This 
explains the observed WLF type temperature dependence 
for probes dispersed in bulk polymers such as polybuta- 
diene, poly(propy1ene oxide), polyisobutylene, ethylene- 
propylene copolymer, and polyisoprene.12 

2,4-di-N-carbazolylpentane dispersed in isooctane, for 
instance, the apparent activation energy turns out to equate 
to the sum of the probe intramolecular conformational 
barrier (-2 kcallmol) and the energy change of viscous 
origin ( -2 kcal/mol). 

In the other extreme case of very slow matrix, T increases 
indefinitely as r5 decreases, as indicated by eq 32. Thus, 
the temperature dependence of T is necessarily the one 
dictated by the matrix only and the latter is deduced from 
eqs 10. 11, and 13 as 

(39) 
The observed WLF behavior for probes dispersed in bulk 
polymers is a common example for this situation.'J2 

Differentiation of the complete expression 27 according 
to eq 36 leads to a rather complicated expression for E,  
in which the simple factorization of the apparent activation 
energy into an Arrhenius and a WLF term is not possible. 
Nevertheless, eq 27 can still be employed to derive the 
temperature dependence of the activation energy by 
numerical methods. 

E, = RI"? a In g, /dT 

Conclusion 
In the present study, a simple model is proposed to 

investigate the dynamics of internal conformational 
transitions coupled to  environmental free-volume 
fluctuations. Accordingly, two states, fast and slow, are 
assigned to the environment as a first approximation to 
the more realistic case of a distribution of free volume. 
However, this approximation is particularly convenient for 
excimer-forming probes in which the excimer formation 
does not take place unless a sufficiently large threshold 
free volume allowing for the well-defined geometric 
rearrangement is provided by the environment. 

A fundamental assumption underlying the theory is that 
the conformational transitions in a given molecule assume 
different rates depending on the nature, fast or slow, of 
its close intermolecular neighborhood while the reorien- 
tations or free-volume fluctuations in the neighborhood 
are not affected by the isomeric state of the molecule. The 
resulting kinetic scheme for the simple isomeric transition 
t Q c is portrayed in Figure 2. 

In the mean-field approach adopted in previous work,g 
the resistance of the environment to motion is implicitly 
considered only through the effective friction coefficient 
in the preexponential factor of the rate constants for in- 
tramolecular conformational transitions. Here a more 
realistic approach is undertaken: the local environment 
of the reorienting molecule or probe is allowed to fluctuate 
in time, thus giving rise to temporal increases or decreases 
of free volume which in turn modulates the rates of in- 
tramolecular rearrangements in the probe. Instead of a 
single relaxational mode representative of the t c 
transition of the probe in a mean-field approximation, now 
two distinct modes with frequencies lA31 and lA41 (eq 18), 
each including explicitly the joint effect of intramolecu- 
lar energetics and local free-volume fluctuations, are 
operative. 

The resulting correlation time as a function of the rate 
r5 of free-volume fluctuations exhibits, as may be seen from 
Figures 4 and 5, a clear transition from the diffusion- 
controlled regime where T decreases with increasing r5 to 
the plateau region a t  large r5 where 7 becomes independent 
of r5. In this latter regime the general eq 27 is satisfactorily 
approximated by the simple expression 29, which is 
identical with the behavior predicted by a mean-field 
approach. For systems in that domain, the temperature 
dependence exhibits the additive contributions of that of 
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Appendix 
Coupling of Longer Probes with the Matrix. 

Relaxation of the probe-matrix system where the probe 
and the matrix may have more than two states follows 
essentially the same arguments as presented in the 
preceding section. For a larger number of states, a 
numerical solution of the master equation is necessary. 

The dynamics of a probe in which rotations are possible 
about more than a single bond is of interest. The analysis 
may be carried out in a manner similar to a recent 
treatmentll of the single chain. 

Let us assume that independent rotations about n bonds 
are possible in a chain. Let A(") denote the corresponding 
transition rate matrix. Its eigenvalues will be indicated 
as A(n). For simplicity we assume again that each bond 
has two states and the matrix has two states. The matrix 
A(") may be written" in terms of A(n-l) and A as 

(AI) 
where I is the fourth-order identity matrix, and W1) is 
the direct product 8 of I, n - 1 times by itself. The 
characteristic equation of A(") is 

Ab) A @ I(n-1) + 1 @ A(n-1) 

where Di (i 
I r 5 ~ ( n - 1 )  r31(n-l) D4 0 

1-4) are given by 

A,)""-"] 

(A31 
where 
recurrence equation 

is given by eq 18. Equation A3 leads to the 

~ ~ ( n )  = ~ ~ ( n - 1 )  + A, k = 1-4 (A41 
where A,(n) ranges from 4"-l(k - 1) + 1 to 4"-lk for each 
k .  Thus starting from the four eigenvalues representative 
of single bond motion, one can build the set of eigenval- 
ues or relaxational frequencies characterizing the motion 
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of independent bonds. Also the corresponding eigenvec- 
tors and eigenrows may be evaluated by suitable 
combination of those given by eqs 20-23, in accordance 
with the formulation recently given." 
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ABSTRACT: A Monte Carlo algorithm for hypercubic lattices is investigated that combines end and kink 
reptations with local dynamic motions. I t  can be used for linear chains, for rings, and for the equilibration 
of the arms of star polymers. The algorithm fulfils the condition of detailed balance, and it is ergodic for a 
single linear chain. For the special case of a cyclic chain in two dimensions, a proof of ergodicity is also given. 
The statistical properties of the algorithm are discussed and, as examples, chain dimensions of linear and 
cyclic chains are computed. 

Introduction 
There are many algorithms known for the simulation 

of single macromolecules on a lattice.' Here we want to 
discuss yet another algorithm that might be used with 
advantage in some applications. The following motions 
are used: (1) inversion of L-structures, end turns, and (2) 
general reptation moves where a kink or end group is 
transported via a conformation change along the chain; 
see Figure 1. The latter motions include, as special cases, 
mere rotations of a kink, i.e., the well-known crankshaft 
motions, and reptations of the whole chain, Le., slithering 
snake motions. Crankshaft motions combined with the 
inversion of L-structures and rotation of end segments are 
known not to be ergodic, and, in two dimensions, new bonds 
are generated only at  the ends;' i.e., with these motions 
rings in two dimensions cannot be simulated. Because of 
the long-range transport of kinks, these disadvantages are 
avoided here. Long-range transport of kinks has already 
been used for dense systems at a volume fraction of uni ty  
in the collective motion algorithm.*+ Long-range motions 
have also been used by Skolnick et al. in simulations of 
lattice models for p r ~ t e i n . ~  For single chains, removal and 
insertion of kinks has been introduced by Berg and 
Foersters and de Carvalhalo et al.'s8 in a grand canonical 
simulation of chains with varying length,l~g and the 
statistical properties of that algorithm have been discussed 
by Caracciolo and Sokal.9 They demonstrated, for 
instance, that these motions are ergodic. As shown here 
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Figure 1. (a) L-inversion. (b) End turn. (c, d) General rep- 
tation motions are shown, where the chain changes conformation 
by a disappearance of a movable group, a slithering motion along 
the contour, and the formation of a movable group. (c) Kink- 
kink reptation. (d) Kink-end reptation. In the example shown, 
the end group takes on a kink conformation, but it could also 
take on other conformations. (e) End-kink reptation. Other 
motions not shown include end-end reptation, Le., the familiar 
slithering snake motion, the rotation of a kink (crankshaft motion), 
and the conformation change of an end group containing two 
beads. 

the removal and insertion of a kink (or an end group) can 
be combined into one step which is still ergodic. 

The paper is organized as follows. First, the algorithm 
is discussed in detail and a proof for ergodicity for linear 
chains in any dimension and for cyclic chains in two 
dimensions is given. Then variants of the algorithm are 
discussed which might be used for denser systems. Finally, 
chain dimensions computed with the algorithm for linear 
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