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density than do equilibrium dimensions. The finding re- 
ported in this paper that lattice type does not materially 
affect the dynamical behavior, but that bead movement 
rules do, is perhaps not surprising in this regard. Further, 
these results raise the possibility that universal chain- 
length dependences of dynamical properties analogous to 
those found for equilibrium dimensions may simply not 
exist; i.e., nontrivial dependence upon move rules may be 
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Lastly, the chain-length dependences of D, rl, and ( 12) 
track in such a way that the dimensionless ratio Drl/ ( 1 2 )  
stays more or less constant, with about the same value 
calculated for a Rouse bead-spring model, independent of 
lattice, move rules, chain length, or excluded volume 
constraints. This ratio may be the sole universal quantity 
for dynamical properties. 

Acknowledgment. Partial financial support from the 
Petroleum Research Fund, administered by the American 
Chemical Society, is gratefully acknowledged (D.E.K.). 

References and Notes 
(1) Verdier, P. H.; Stockmayer, W. H. J .  Chem. Phys. 1962, 36, 

227. 
(2) Verdier, P. H. J .  Chem. Phys. 1966, 45, 2122. 

860. 
(12) Verdier, P. H. J .  Comput. Phys. 1969, 4 ,  204. 
(13) Throughout this paper, the word “random” with reference to 

computer simulations means the result of using a pseudoran- 
dom number generator. The generator employed in the pres- 
ent work was of the multiplicative congruential type, with a 
multiplier of 513 and a modulus of P5. 

(14) For p = 0.5 and N = 99, we obtain the value 0.0413 in units 
of N 3  move cycles. The correct value of o ~ l  for p = 0.0 and N 
= 63 is 0.1013, not 0.1010 as given in ref 8. (The corresponding 
ratio R in Table I11 of ref 8 should be 47.5 instead of 47.7.) 
The remaining values of Orl are as reported in ref 8. 

(15) Perico, A,; Bisio, S.; Cuniberti, C. Macromolecules 1984, 17, 
2686. 

(16) Rouse, P. E., Jr. J .  Chem. Phys. 1953,21, 1972. Zimm, B. H. 
J .  Chem. Phys. 1956,24, 269. 

(17) Kranbuehl, D. E.; Verdier, P. H. Macromolecules 1984,17,749. 
(18) Romiszowski, P.; Stockmayer, W. H. J .  Chem. Phys. 1984,80, 

485. 

Investigation of Local Motions in Polymers by the Dynamic 
Rotational Isomeric State Model 

Ivet Bahar and Burak Erman* 
School of Engineering, Bo&ziqi University, Bebek, 80815, Istanbul, Turkey. 
Received July 15, 1986 

ABSTRACT The internal dynamics of a short sequence in a chain is studied according to the dynamic isomeric 
state scheme. Conformational transitions with dynamic pair correlations are considered. Resistance to dynamic 
rearrangements resulting from environmental effects and constraints operating at the ends of a sequence is 
incorporated into the calculation scheme. Calculations for a short sequence in a polyethylene chain showed 
that pair correlations do not significantly affect the orientational relaxation of a vector affixed to a bond of 
the sequence. Contribution from constraints, on the other hand, is dominant and slows down the orientational 
motions. 

Introduction 
The RouseZimm model,lS2 though successful in repre- 

senting the low-frequency motions of polymeric chains, is 
unsuitable for rapid relaxation processes that are attrib- 
uted to local conformational transitions of the backbone. 
These motions are studied by techniques such as NMR, 
dielectric relaxation, fluorescence anisotropy decay, ESR, 
ultrasonic relaxation, dynamic light scattering, giving in- 
formation about the orientation correlation functions 
and/or the corresponding spectral densities. A common 
feature deduced from experimental evidence is the oc- 
currence of a nonexponential relaxation associated with 
local backbone rearrangements. To explain the observed 
departure from Debye behavior, on a molecular basis, 
stochastic jump models, both n~mer icaP-~  and analyti- 
cal,&l2 have been developed. In dynamic Monte Carlo 
techniques, Verdier and Stockmayer3v4 and GBny and 
Monnerie5 adhered to the postulate of local coordinated 
motion leaving unchanged the tails surrounding the mobile 
segment. Such crankshaft motions were first conceived 
by Boyer and Schatzki.13 On the other hand, Helfand et 
al.6-9 concentrated on the transitions of a single bond, 
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accompanied by some distortion and deformation spread 
over the neighboring units, in order to accommodate the 
newly created isomeric state. In fact, the experimentally 
o b ~ e r v e d l ~ - ~ ~  activation energies and Brownian simula- 
t i o n ~ ~ ~ ~  suggest the crossing of but a single rotational barrier 
during local motions. According to their kinetic theory, 
which employs an extension of Kramer’s rate theory,17 
compensating pair transitions are between second neigh- 
bors and occur only when the intervening bond is in the 
trans position. The two-state model proposed by Hall and 
Helfand7 treats two types of transitions, cooperative and 
individual, leading respectively to compensating motions 
of neighboring units and translation of chain ends. 

The basic physical and mathematical character of local 
chain dynamics is delineated in the above studies and in 
several references cited therein. The local dynamics may 
conveniently be described by the orientational relaxation 
of a vector affixed to a bond of the chain. That this re- 
laxation progresses through correlated rotational transi- 
tions of the bonds of the sequence is now well established. 
However two fundamental points brought out by these 
studies still remain unsettled. First, the effect of neighbor 
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correlations on time correlation functions has to be as- 
sessed quantitatively. Mathematical treatments of 
neighbor correlations based on the dynamic Ising mod- 
e110J8-21 are essentially one-dimensional models and cannot 
be used to rationally describe the consequences of three- 
dimensional rotations about bonds. Second, the impor- 
tance of constraints associated with chain connectivity and 
resistance of the surroundings has to be established on 
more quantitative grounds. On-lattice treatments that 
leave the tails of a sequence unchanged and local rear- 
rangement models that do not impose constraints on the 
motion of the tails are two extremes. 

The express purpose of the present study is to develop 
a mathematical scheme for calculating the effects of 
neighbor correlations and of constraints due to chain 
connectivity in a short sequence situated in a long poly- 
meric chain. The mathematical model of Jernigan,22 which 
is essentially the application of the rotational isomeric state 
scheme to chain dynamics, is adopted for this purpose. 
Accordingly, the internal time correlation functions of a 
chain can be computed by employing matrix methods 
previously used in calculations of equilibrium chain sta- 
t i s t i c ~ . ~ ~  The method is essentially an extension of the 
dynamic Ising model of GlaubeP to real polymeric sys- 
tems. 

In the first section below, the problem is defined and 
the method of Jernigan is recapitulated with specific em- 
phasis on dynamic pair correlations in a chain. In the 
following section, results of the theory are applied to in- 
vestigate the internal dynamics of a long polyethylene 
chain. The autocorrelation of a vector affixed to the 
middle of a nine-bond sequence in the polyethylene chain 
is calculated. It should be pointed out that the "motional 
unit" in a relaxing chain is not defined a priori. Different 
length scales are probed in various spectroscopic experi- 
m e n t ~ . ~ ~  For instance, the motions of relatively short se- 
quences are probed in NMR, whereas dielectric relaxation 
probes larger scale motions. The length scale of motional 
units is estimated to be approximately 7 times larger in 
dielectric relaxation compared to that in NMR.25 Also 
recent holographic grating experimentsz6 lead to correlation 
times ca. 8 times larger than those observed in NMR ex- 
periments. The complete description of local dynamics 
should include the contribution from motional units of 
various sizes. The choice of nine bonds in the present 
study is only for the purpose of illustration of the factors 
affecting the relaxation mechanism. The present explor- 
atory analysis may be extended to longer sequences at the 
expense of computer time only. 

Theory 
Description of the  Model. A short sequence AB in a 

long polymeric chain is depicted in Figure 1. The two 
portions PA and BQ of the chain on both sides of the 
sequence are shown with heavy dashed lines. A unit vector 
m is affixed to the middle bond of the sequence. The 
coordinate system Axyz is embedded in the chain. The 
x axis is chosen to lie along the first bond of the sequence. 
Th y axis is chosen such that second bond of the sequence 
lies in the xy plane. The vector r represents the instan- 
taneous end-to-end vector of the sequence. A laboratory 
fixed-coordinate system is represented by OXYZ. The 
instantaneous position of point A with respect to the 
laboratory fixed-coordinate system is denoted by R. 

The chain may be situated in a suitable solvent or may 
be in the bulk state above its glass-rubber transition 
temperature. In any event, the dynamics of the chain is 
assumed to result from rotational transitions of bonds from 
one isomeric state to the other. These isomeric transitions 

Local Motions in Polymers 1369 

Z' 
Figure 1. Schematic representation of a portion of the polymeric 
chain. A unit vector m is affixed to the central bond of the 
nine-bond sequence AB whose end-to-end vector is denoted r. 
The mobile frame Axyz is embedded in the chain as shown in 
the fiiure. OXYZ is the laboratory fixed-coordinate system. The 
vector R joins the centers of the two reference frames. 

usually take place in the nanosecond range and involve 
coordinated motions of a few bonds only. The sequence 
AB shown in Figure 1 is chosen such that in the short 
duration of interest conformational rearrangements in the 
portions PA and BQ of the chain do not appreciably 
change the orientation of the vector m. 

Let the orientational relaxation of m be described by 
a time correlation function @(t). Any such function ob- 
served in a spectroscopy experiment is necessarily ex- 
pressed with respect to the laboratory fixed-coordinate 
system OXYZ. Two factors contribute to the orientational 
relaxation of m: (1) the internal relaxation due to the 
rotameric transitions in the bonds of the sequence AB, 
formulated with respect to a chain-embedded coordinate 
system such as Axyz; (2) the orientational relaxation of the 
coordinate system Axyz with respect to the laboratory 
fixed system OXYZ referred to as the external relaxation 
in the following. 

With the assumption that the two contributions are 
uncorrelated, the function @(t) may be expressed as the 
product @(t) = @,t(t)@int(t), where aeXt(t) and aint(t) are 
the external and internal correlation functions, respec- 
tively. The specific aim of the present study is the 
mathematical description of the internal relaxation func- 
tion Ght(t) with respect to the chain-embedded coordinate 
system Axyz. 

The internal time correlation function aint(t) may stand 
for the internal parts of two experimentally measurable 
functions, defined as 

Ml,int(t) = (m(O).m(t)) (1) 

(2) 

where the argument of m denotes the time of observation 
and the dot denotes the scalar product. is the 
internal autocorrelation function involved in dielectric 
relaxation, whereas M2,int(t) is the one involved in NMR, 
ESR, and fluorescence anisotropy experiments. 

Recapitulation of Jernigan's Scheme. According to 
the rotational isomeric state each bond along the 
backbone is assumed to undergo a discrete angular rotation 
about its own axis. In general three rotations leading to 
configurations referred to as trans (t) and gauche f (g') 
are found to be energetically most favorable. For a se- 
quence consisting of N skeletal bonds, a complete set of 
rotational angles &, ..., @ N )  specifies a given configu- 
ration, ($Ik, k = 1, 2, ..., 3N. We let P("(t) denote the 

and 

Mz,int(t) = (1/2)(3([m(0).m(t)12) - 11 
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3N-dimensional vector of the time-dependent probabilities 
of all possible configurations {&. The time rate of change 
of P('(t) may be related to P(M(t) by a matrix equation 
known as the master equation 

dP("(t)/dt = A(MP(M(t) (3) 
where A(" is the 3N X 3N matrix with the element Ai? 
describing the momentary rate of passage from configu- 
ration (& to (&. Equation 3 may be solved formally to 
yield 

P(M(t) = exp(A"t)P(M(t=O) = 
%(M exp(r(Mt)[%(M]-'P("(t=~) = @W(M(t=o)  (4) 

where %(" is the matrix formed from eigenvectors of A(M, 
I(" is the diagonal matrix of eigenvalues of A(M, [ B(M1-l 
is the inverse of %(M and 

@(M %(M exp(L(Mt)[%(M]-l (5) 
is the time-dependent (or delayed) conditional probability 
matrix. 

The element @k['" denotes the conditional probability 
of the occurrence of configuration (& at time t ,  assuming 
that the configuration was (& at  t = 0. It is evident from 
this definition that the elements of each column sum up 
to unity since they encompass all possible transitions 
starting from a fixed initial conf igura t i~n .~~ The total 
time-dependent joint probability matrix P ( M  is given in 
terms of @(M as 

P(M = @(M diag P(M(t=O) (6) 

The element Pk+M denotes the joint probability of having 
configuration @Ik at  time t and (& at  t = 0. Knowledge 
of P(M leads to a complete description of the dynamics of 
the N-bond sequence. 

Consider the rotation of a single bond. The rotating 
bond is allowed to assume any conformational state (t, g+, 
g-) irrespective of the state of the adjacent bonds. For 
single bond motion, the master equation reduces to 

dPf')(t)/dt = Aj(')P;(l)(t) (7) 

The subscripts index the location of the mobile bond along 
the long polymeric chain. The associated relationships 
given by eq 4-6 equally apply with the superscript (1) 
replacing (N). %(l), S(l), and P(l)  retain their previous 
definitions. In particular, the elements of P(l) will be 
denoted by p(S;t;r,O) and represent the joint probability 
of occurrence of state { at time t and r at t = 0. 

If the mobile bond undergoes independent conforma- 
tional transitions according to Scheme Izz 

Scheme I 
r2 

g+ t F g- 
1 r2 

as in polyethylene, the matrix A(') takes the formz2 

-4r, r-l r-1 r-1 
rl -r2 - r3 - r-l 0 0 
rl 0 -r2 - r3 - r..l 0 

Here rl and r2 denote the rates of the transitions indi- 
cated in Scheme I. For N-bond sequences obeying inde- 
pendent stochastics, the vector P(M(t) may be writtenz2 
P(M(t) = 

Pl(')(t) 8 Pz(l)(t) 8 . .a 8 P,(l) 8 ... 8 Pg!l(t) 8 PN(')(t) 
(9) 

where 8 denotes the direct product. Differentiating both 
sides of eq 9 with respect to time and using eq 7, we end 
up with the master equation for the N-bond sequence with 
independent bond rotations 
dP(M(t)/dt = 

N 
C (I, 8 I3 8 ... 8 

]=1 
8 ... 8 I, 8 I,)P(M(t) (10) 

where I3 is the third-order identity matrix. The corre- 
sponding joint probability matrix P ( M  was determined by 
Jernigan, using the procedure outlined by eq 4-6. The 
neighbor dependence of equilibrium statistics was incor- 
porated into the treatment through adoption of interde- 
pendent equilibrium distribution for P(M(t=O). 

Pairwise-Dependent Transitions. If simultaneous 
transitions of the j th  and (j + 11th bond are considered, 
the master equation takes the following form: 
dP(M(t)/dt = 

N 

]=1 
{E I, 8 I, 8 ... 8 AJ;il 8 ... 8 I3 8 I,}P("(t) (11) 

Equation 11 holds for sequences of bonds with inde- 
pendent statistics but pairwise-dependent dynamics. The 
elements of Aj;)+l are the transition rates from one pair of 
isomeric states to the other. A:;)+?, is related to the bond 
probabilities by the expression 
d[P,(l)(t) 8 P&),(t)]/dt = Aj:)+)+lPl(l)(t) 8 Pp1(t) (12) 

However not all of the transitions are accessible owing 
to high energy barriers between conformers. Consequently, 
a number of elements in the matrix equate to zero. 
Conformational energy maps constructed by varying two 
successive skeletal bonds may be used to localize the 
bounded region of permitted pair transitions; this region 
is in general surrounded by high-energy walls. Within the 
domain of accessible transitions, passage from one con- 
figuration to another occurs through saddle points. For 
example, the examination of energy mapsz8 for poly- 
ethylene suggests the accessible transitions shown in 
Scheme 11. r l ,  r2, and r3 denote the indicated rates of 
transitions. r-, refers to the rate in the opposite sense of 
rL. Explicit expressions for the rates will be given in the 
next section. Following Scheme 11, becomes the 
matrix shown in eq 13. 

Inasmuch as the sequence is assumed to be inside a long 
chain, the subscripts jj+l will be omitted in the following. 
The matrix A(2) may be used to calculate the matrices %@), 
.P), e@), and F2) in analogy with the procedure outlined 
above for N = 1. The elements p({q,t;rq',O) of P3(z) give 
the joint probability of state t q  at time t and rq' at t = 
0 for a given pair of bonds. 

0 0 r-1 0 0 
r-2 0 0 r-3 0 
0 r-* 0 0 r-9 

rl 0 0 -r2 - r3 - r-l r_2 r-3 0 0 0 
0 r2 0 r2 -2r-2 0 0 0 0 
0 0 r3 r3 0 -k3 0 0 0 
rl 0 0 0 0 0 -r2 - r3 - r1 r-3 rL2 
0 r3 0 0 0 0 r3 - 2 ~ ~  0 
0 0 7 2  0 0 0 7.2 0 -2r 

(13) 
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Scheme I1 
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In the other extreme case of high-friction limit the same 
quantity  become^^*^ 

J/n* = D / d *  (21)  

D = k B T / {  (22)  

where the diffusion constant is given by 

Using eq 18-22, we end up with Kramers’ expression for 
the rate in the high-friction medium 

r = (yy*)1/2(27r{)-1 exp(-E,/RT] (23) 

The same equation was adopted by Helfand and Skol- 
nickg in their kinetic treatment of conformational tran- 
sitions in polymers. A general expression for the rate of 
transition applicable at low, intermediate, and high friction 
can be found in their work.g 

Through adoption of eq 23, the rotational transition 
rates are rendered ca. 20 times slower compared to those 
resulting from Jernigan’s treatment where the ratio F * / F  
in eq 14 is not considered, thus leading to too rapid 
motions. 

Solution of the Master Equation for a Sequence 
with Pairwise Cooperative Transitions. The elements 
of the joint probability matrix P(M(t) may be written ex- 
plicitly for the case of pairwise-dependent bonds. Con- 
sider, for instance, the following transition: 

(a’p’y’ti’ ...; 0) - (aPyti ...; t )  

where a‘p’y’6’ ... denotes the state of the sequence at t = 
0 and apy ti... denotes that a t  time t. The corresponding 
joint probability or equivalently the normalized stochastic 
weight associated with this transition will be 
p(apyti ... t;a’p’y/ti ... 0) = 

p(ap,t;a’P’,O)q(py,t;P”,O)q(ys,t;y’G’,O) ... (24)  

q(Pr,t;p’r’,O) = P(Pr,t;p’r’,o) / [CCP(P.rl,t;P’r,o)l (25)  

The summation in eq 25 is over all possible rotational 
states. Thus, if three isomeric states are available to each 
bond, this summation includes nine terms (3 = t,g+,g- and 
l‘ = t,g+,g-). The term q(By,t;p’y’,O) may be viewed as the 
conditional probability of occurrence of the joint event 
(@y,t;p’y’,O), given that the first bond of the pair undergoes 
the transition from initial state p’ to state P at time t. Thus 
q > p ,  since the sample space is reduced by fixing the 
initial and final states of the first bond of the pair. The 
application of eq 24 and 25 to every possible transitions 
(3N X 3N of them for N bonds with three states, each) 
yields the time-delayed joint probability matrix P(“(t). 

For independent bonds undergoing independent tran- 
sitions, eq 24 simplifies to 

where 

v r  

p ( Cupya. .. t;a‘P’y’ti/. ..o ) = 
p(a,t;a’,O)p(P,t;P’,O)p(y,t;y’,O)p(G,t;G,o) ... (26)  

where p(a,t;a;O), p(P,t;P’,O), etc., are elements of the matrix 

Effect of Constraints. Let r(0) and r(t) denote the 
end-to-end vector of the sequence at  t = 0 and t ,  respec- 
tively. The fluctuation in r during this time interval is 

Ar = r(t) - r(0) (27)  

Let the motion of the sequence be described with respect 
to the coordinate system Axyz shown in Figure 1. If there 
are no constaints operating on end B of the sequence 
shown in Figure 1, then Ar will take any value compatible 
with conformational transitions available to the sequence 

P(l)( t ) .  

9-9+ 
r -  9 

9-9- , r~ ’ g-t , 

Calculation of the Rates ri. The explicit expressions 
for the rates ri consist of the product of two terms: one 
reflecting the height E, of the saddle point to be crossed 
with respect to the initial isomeric state and the other 
accounting for the frictional drag exerted by the medium. 
The first one is the familiar Boltzmann factor while the 
second one enters as a front factor. This front factor 
requires some elucidation. Jernigan chose the front factor 
to be of the form k B T / h ,  where kB is the Boltzman con- 
stant, h, Planck’s constant, and T the absolute tempera- 
ture, in conformity with Eyring’s theory of absolute re- 
action rates.29 This factor represents the frequency with 
which the activated complex crosses the energy barrier at 
a given temperature. According to the theory,= this factor 
is multiplied by the ratio (F*/F) of the partition function 
of the molecule in the activated state to that in the initial 
state. Written in explicit form, the correct expression for 
the rate will be 

r = ( h T / h ) ( F * / F )  exp{-E,/RTJ (14)  

F * / F  = ( h 2 / 2 ~ m k B T ) 1 / 2 / u f l / 3  (15)  

where m is the mass of the particle undergoing the tran- 
sition and moving in the free volume up The free volume 
uf of a particle oscillating in a potential well is proportional 
to the amplitude of the harmonic motion. This amplitude 
d may be expressed in terms of the force constant y, which 
is a measure of the relative steepness of the potential well, 
as 

d = ( 2 r k B T / y ) l I 2  (16)  

and the ratio F * / F  is given by29 

so that 

a ( 2 a k B T / y ) ’ l 2  (17)  

where a denotes the proportionality. 
In the theory of absolute reaction rates the crossing over 

the potential barrier is the rate-controlling event. In 
analogy with eq 16, we may write for the top of the bar- 
r i e r*~~  

d* = ( 2 a k B T / y * ) ’ l 2  (18)  
where d* and y* are characteristics of the activated state. 

Substituting eq 15 and 17 in eq 14, we obtain Kramers’ l7 
low friction rate expression 

r = ( 1 / 2 ~ ) ( y / m ) l / ~  exp(-E,/RT) (19) 
In this low friction limit, which does not include the 
friction coefficient {, the particle flows over the barrier with 
an average velocity equal to ( k B T / 2 n m ) 1 / 2 ,  assuming that 
there is equilibrium distribution of velocities in the acti- 
vated state. If J denotes the flux over the barrier and n* 
the density of the particles across the barrier, the velocity 
in the low-friction limit may be written as 

J/n* = ( k ~ T / 2 ~ m ) ’ / ’  (20) 
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AB. If, on the other hand, the motion of end B relative 
to end A is constrained by the presence of the sequence 
BQ of the chain, A r  will be confined to within a spherical 
domain defined by Ar < 6,) where Ar is the magnitude of 
A r  and 6, denotes the radius of the sphere in which the 
end B may travel between successive transitions. 6, varies 
inversely with the strength of constraints. 

Confinement of A r  into a sphere excludes certain con- 
formational transitions of the chain which would otherwise 
be possible in the absence of constraints. If, for example, 
the transition from configuration (& at time t = 0 to (& 
at time t renders Ar > 6,) the element Pkl(" of PD(M(t) has 
to be replaced by zero. The elements of P(M obtained in 
this manner have to be renormalized to yield zkz lPk l (N)  
= 1. 

Expressions for  Orientational Autocorrelation 
Functions. The time-dependent joint probability matrix 
P("(t) may be used to calculate the autocorrelation 
function Ml,int(t) of m as 

(28) Ml,int(t) = htT(P(M(t)  8 I,)& 

Here, the superscript T denotes the transpose, and 

r m l  i 

where mi is the vector m corresponding to configuration 

Equation 28 may be expressed in component form as 
@)j* 

Ml,int(t) = CCPij" mimI (28') 
i J  

where the summations are over all available configurational 
states of the chain. 

The second orientational autocorrelation function 
Mz,int(t) may be expressed in matrix form as 

Mz,int(t) = 1/2{3 Tr  (JVT(PD"(t) 8 I,)") - 1) (30) 

where Tr denotes the trace operator and JV is the 3"" X 
3 matrix defined by 

r m l m l T  1 
m2mzT 

Equation 30 may be written in component form as 

Mz3int(t) = Y z { 3 X X ~ & w  (m;.mj)* - 11 (30') 
i l  

Calculations for the  Polyethylene Chain 
Various sequences of different sizes contribute to the 

internal relaxation of a chain, thus affecting the experi- 
mentally observed spectra. Calculations for the internal 
relaxation of a sequence of nine bonds of a polyethylene 
chain are presented in the following, for illustrative pur- 
poses. 

Conformational energies determining rotational states 
are taken from the work of Abe, Jernigan, and Flory.28 
Only the internal dynamics relative to the reference frame 
Axyz is considered. The first bond of the sequence is held 

Table I 
Most Probable Transitions 

no. transition, r ~ '  - {q 
1 tt - tt 
2 tg* - tg' 

3 g'g' - g g 
4 g'g' - g'g' 
5 g*t - tt 

tg* - tt 
6 tt - tg' 

tt - g't 
7 g*g' - tg' 

g'g' - g't 
8 g'g' - g't 

g'g' - tg' 
9 g'gT - tt 

10 g't - tg' 
tg+ - g't 

g*t - g*\ ' 

fixed in the trans state. The dynamics of m is expressed 
in terms of the second internal autocorrelation function 
M2,int(t). In the absence of constraints at the end B, the 
dynamics of m is determined by the transitions of the 
bonds situated between point A and m. The remaining 
part of the sequence between m and point B is inconse- 
quential for the unconstrained motions. The whole se- 
quence, however, has to be considered in the presence of 
constraints due to the non-Markoffian nature of the 
phenomenon. 

Calculation of Conditional Pair Probabilities. The 
time-dependent conditional probability matrix for pairs 
of polyethylene bonds is calculated form eq 5, with N = 
2. % ( z )  and _C@) in eq 5 are computed by similarity 
transformation from A@) defined by eq 13. The rates in 
A@) were obtained with eq 23. The values for y, y*, and 
{for polyethylene were taken from ref 9. The front factor 
(yy*)1/2/27r{ was calculated to be 2.77 X 10l1 s-l. The 
activation energies for the rates rl, r+ r2, r-z, r3, and r-3 
were taken as 3.5, 3.0, 3.7, 3.0, 3.0, and 0.3 kcaI/mol, re- 
spectively, as deduced from the heights of the saddle points 
of energy maps constructedz8 for polyethylene. Detailed 
calculations of the energy map show that the g*g- states 
further split into two minima.28 This splitting is however 
neglected within the approximation of equilibrium rota- 
tional isomeric states calculations. It is also assumed that 
this splitting does not significantly affect the local dy- 
namics and is henceforth neglected. 

Figure 2 displays the variation with time of the condi- 
tional probabilities for the pairs of bonds at 300 K. The 
elements of are represented by p({q,t/Yq',O) in the 
ordinate. p (  {q,t/rq',O) denotes the conditional probability 
of occurrence of states {q at  time t given state rq' at t = 
0 for any pair of adjacent bonds. Only the most probable 
transitions are shown in the figures for the interest of 
clarity. The transitions are identified by numbers defined 
in Table I. 

For comparison, the same conditional probabilities 
calculated on the basis of independent rotations are plotted 
in Figure 3. The matrix A@) for independent bonds was 
calculated from 

A(z) = A(') 8 I, + I, 8 A(') (32) 
as follows from eq 10. A(') is given by eq 8 where the rates 
were evaluated with eq 26 again with the same front factor 
as above and taking the activation energies for rl and r2 
equal to 3.5 and 3.0 kcal/mol, respectively. The associated 
matrix for independent rotations is determined from 
A@) in eq 32, by the procedure outlined above. 

Examination of Figures 2 and 3 leads to the following 
conclusions. The strong tendency of interdependent bonds 
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Figure 3. Time-dependent conditional probabilities p (  {~&rf,O) 
for polyethylene bond pairs with independent rotational potentials. 
The numbers on each curve indicate the transitions listed in Table 
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Figure 2. Time-dependent conditional probabilities p({q,t;rV',O) 
for polyethylene bond pairs with interdependent rotational po- 
tentials. The curves are drawn for cases (a) l~ = r ~ '  and (b) {q 
# r ~ ' .  The numbers on each curve indicate the transitions listed 
in Table I. 

to escape the grg* state constitutes the most apparent 
departure from the behavior of independent pairs. Re- 
sulting from this tendency, some transitions such as g' t - tgr and gigr - tt become relatively more important 
when neighbor dependence is taken into account. In 
general, the rates of transitions from state {q to CT' are 
slightly enhanced with the introduction of neighboring 
bond interdependence. This increase in rate is however 
counterbalanced by the increased probability of pairs in 
tt state (the most probable state from equilibrium statis- 
tics) to remain unchanged. Thus although the character 
of the conditional probabilities depicted in Figures 2 and 
3 differ markedly, this difference may not be reflected so 
significantly on the overall dynamic behavior in particular 
on the orientational autocorrelation function as will be 
shown below. 

Calculations were carried out for 300 K in Figures 2 and 
3. At this temperature, the probabilities converge to their 
equilibrium value within time intervals of about 1 ns, as 

1. 

may be predicted from the extrapolation of the curves in 
Figures 2 and 3. Subsequent calculations will show that 
the relaxation time increases significantly with decreasing 
temperature. 

Calculation of M2,int(t) for a Sequence without 
Constraints. The motion of m with respect to the co- 
ordinate frame Axyz is considered. The orientation of m 
relative to this frame is determined by the rotations of the 
five intervening bonds. Since the first bond is held in trans 
position, 3* configurations resulting from the isomeric 
rotations of the subsequent four bonds need be considered. 
If, as in the present study, the direction of m coincides with 
that of the central bond, the problem reduces to the 
analysis of the 33 configurations associated with the isom- 
eric rotations of the three preceding bonds and the tran- 
sitions in between. The vector m, corresponding to con- 
figuration @), is determined by conventional methods em- 
ploying bond-based coordinate frames and transformation 
matrices.23 The transitions between all configurations are 
assigned time-dependent joint probability Pll('"') values 
according to eq 24 and 25. The joint probabilities for the 
pairs in eq 24 and 25 are determined from eq 6 with N = 
2, where the conditional probability matrix @) calculated 
in the above section for interdependent bonds is used. The 
components of P(2)(t=0) in eq 6 follow from the equilibrium 
statistics of pairwise-dependent polyethylene  chain^.^^^^^ 
The orientational autocorrelation function M2,,nt(t) is 
computed with eq 30' where the calculated Pv(M and m, 
values are substituted. Term-by-term evaluation of P ( M  
(or P,,(N) in the manner stated above does not require the 
use of the complete matrix and hence allows for the ex- 
tension to longer sequences, at the expense of computation 
time only. 

The calculated orientational autocorrelation functions 
for interdependent rotations are represented by the solid 
curves in Figure 4 for T = 200, 250, and 300 K. A strong 
dependence on temperature is discernible. It is interesting 
to note that the autocorrelation functions do not relax to 
zero but to finite values representing the equilibrium au- 
tocorrelation of m. 

To estimate the influence of neighbor dependence on 
the dynamics of the chain, the calculation of &f2+,Jt) was 
repeated for a sequence with independent bonds. In this 



1374 Bahar and Erman 

---- - _ _ - _ _  _ _ _ _ _ _ _ - _ _  ----- ---- 

Macromolecules, Vol. 20, No. 6, 1987 

I 

t t n a l  

Figure 4. Orientational autocorrelation function M2,,&) of the 
vedor m in polyethylene at 200,250, and 300 K. The solid curves 
are drawn for sequences with interdependent bonds. The dashed 
curves were calculated on the basis of independent rotational 
potentials. In calculations, end A of the sequence AB was held 
fixed, while the motion of B was not restricted. 

case, Pl,(m values were determined from eq 26. The ele- 
ments p({,t;r,O) of P(l) in eq 26 were calculated from P(l)  
= diag P(')(t=O), Le., the form eq 6 takes for N = 1. 
The explicit expression for is given in ref 22. The 
components of P(l)(t=O) are taken as the equilibrium 
probabilities of t,g+ and g- states. Again eq 30 was used 
for the computation of M2,Jt )  but, in this case, with the 
newly obtained P,s. The resulting autocorrelation func- 
tions are shown as dashed curves in Figure 4. 

The difference between the solid and the dashed curves 
increases as the equilibrium values are approached, while 
they follow almost the same trend during the initial stage 
of decay. Examination of the steps in the calculations 
shows that, although the same trend is observed during 
the decay of the autocorrelation functions, the contribu- 
tions of specific transitions to Mz,int(t) differ in the two 
treatments but finally sum to almost the same values for 
M2,,nt(t). The departures near equilibrium are however 
dominated by differing equilibrium distributions of inde- 
pendent and pairwise-dependent bonds. 

Incorporation of pairwise dependence into equilibrium 
distributions as was done by Jernigana2 is expected to lead 
to virtually the same solid curves as those depicted in 
Figure 4. 

Calculation of M 2 , J t )  for a Sequence with Con- 
straints. In this section, the autocorrelation function 
M2,(t) is calculated for a nine-bond polyethylene sequence 
in which the fluctuations of end B (see Figure 1) of the 
sequence are restricted to values less than 3 A. 

The strength of constraints operating at point B of the 
sequence shown in Figure 1 is determined by the param- 
eter 6,, which restricts the possible configurational tran- 
sitions. Accordingly, a transition that results in the dis- 
placement of end B larger than 6, has to be discarded from 
calculations. 6, = 0 corresponds to one extreme case where 
the dynamics of the chain is realized only through reorg- 
anizations that leave the tails undisturbed. This situation 
corresponds to the on-lattice model of chain dynamics. 
The condition 6 ,  = 0 imposes severe constraints on the 
dynamics of a sequence. The smallest sequence for which 
this condition is satisfied contains three bonds as was 

0.0 0 .2  0.4 0.8 0.8 1.0 

A d A r I n a x  

Figure 5. Distribution W(Ar) of transitions in a sequence re- 
sulting in the displacement of one end by Ar, the other end being 
fixed. Calculations are performed for the nine-bond sequence. 
Point P denotes a displacement of 3 A. 

discussed by Monnerie et aL5 some years ago. The number 
of allowable transitions satisfying the condition 6 = 0 is 
very small. Most of these transitions are crankshaft 
motions. The number of possible transitions increases 
Significantly as end B of the sequence in Figure 1 is allowed 
to move in a finite domain. The other extreme case is the 
one in which end B may fluctuate freely. This corresponds 
to the case 6 = Arm, where Arm, represents the maximum 
attainable distance between two positions of point B. In 
general, augmenting the size of the motional unit and 
decreasing the degree of constraints have qualitatively 
same effect on local dynamics. 

The value of 6o = 3 A adopted in this section for the 
nine-bond polyethylene sequence is considerably smaller 
than the maximum value Armax of 17.54 A. However, a 
significant number of transitions is possible with this 
choice of 6 ,  as explained in the following paragraph. 

Let N(Ar) denote the number of transitions of a se- 
quence which results in the displacement of end B by an 
amount Ar. The ratio of N(Ar) to the total number of 
possible transitions describes the distribution, W( Ar), of 
fluctuations resulting in a displacement of Ar. In Figure 
5 results of calculations of this distribution for the nine- 
bond polyethylene sequence are shown as a function of Ar. 
The abscissa values are normalized by dividing Ar with 
Arm=, The total possible number of transitions in the 
absence of constraints is 314 for the nine-bond sequence 
in which the first bond is kept in the trans state and the 
state of the last bond does not affect the configurations 
of the sequence. Point P on the abscissa corresponds to 
the value of Ar = 3 A. The total number of transitions with 
Ar < 6, = 3 8, can be obtained from the area under the 
W(Ar) curve between points 0 and P. Calculations show 
that 15% of the possible transitions are allowed under the 
constraint Ar < 3 A. 

The time dependence of the orientation autocorrelation 
function for a sequence with bo = 3 A is shown in Figure 
6 for three different temperatures. 

Comparison of Figures 4 and 6 shows that relaxation is 
significantly slowed down when transitions are constrained, 
and the asymptotic values to which the curves converge 
are considerably higher in restricted motion. This result 
is a natural consequence of chain connectivity. The ex- 
perimentally observed decay to zero is not obtainable 
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nating bonds in a sequence undergoing three-bond 
crankshaft motion was investigated. However, as the 
relative contribution of every possible transition to internal 
relaxation has to be considered, refinement in this direction 
would become increasingly complicated, particularly as the 
size of the motional unit increases. 

The example calculations were carried out for the central 
bond of a nine-bond sequence in polyethylene. Clearly, 
the internal relaxation in polymers takes place by various 
modes involving sequences differing in size. A limited 
range of modes contributes to relaxation spectra in each 
experiment, depending on the specific characteristics of 
the experimental technique.%?% A rigorous analysis should 
consider not only motional units varying in size but also 
the location, within a motional unit, of the bond whose 
reorientation is detected, as is apparent from the com- 
parison of results from optical and NMR  experiment^.^^ 

Calculations performed but not included in the present 
study show that average relaxation time for internal units 
decreases with increasing sequence length. The same 
dependence on sequence length follows from the calcula- 
tions carried out by Jernigan for a-o-dibromo-n-alkanes 
with n = 4-6. The shorter relaxation time associated with 
longer sequences may be rationalized on the basis of the 
larger number of possible paths to relaxation which is 
available to longer sequences. Thus the decay in the in- 
ternal orientational autocorrelation function is more rapid 
with longer sequences. The autocorrelation function 
calculated by Valeur et al.," on the basis of three-bond 
motions, the shortest motions leaving the tails unchanged, 
was found to decay too slowly with time, which led them 
to append an additional exponential decay function to the 
derived equation. The present analysis demonstrates that 
a more rapid decay function is obtainable by allowing a 
longer sequence to undergo conformational transitions. 

However another effect, the environmental resistance 
due to friction, tends to slow down the motion of the unit 
under consideration and this effect becomes increasingly 
stronger as the size of the motional unit increases. In fact, 
for Rouse-like modes the relaxation time is proportional 
to the second power of the molecular weight of the mot- 
ional unit. Thus the application of the present analysis 
to sequences where Rouse-like behavior dominates is not 
meaningful. An upper bound for the size of the motional 
sequence is formulated in the form of a long-wavelength 
cutoff in the work of Bendler and Y a r i ~ . ~ ~  The short- 
wavelength cutoff which is also introduced in their work 
is inherent in the present study since real molecular 
structures are considered. 

Constraints operating on the ends of the sequence were 
found to exert a dramatic effect on Mzet(t). The slowing 
down of local dynamics upon precluding the large fluctu- 
ations of the sequence end-to-end vector was more ac- 
centuated at lower temperatures. Calculations also show 
that internal conformational rearrangements do not lead 
to complete relaxation as long as no external global re- 
orientation is superposed on them. In fact, M2,i,t(t) con- 
verges to finite values that increase with the degree of 
constraints imposed by chain connectivity. 

Acknowledgment. We gratefully acknowledge the 
advice and suggestions of Prof. Lucien Monnerie 
throughout the course of this work. 

References and Notes 

Registry No. Polyethylene, 9002-88-4. 

(1) Rouse, P. E., Jr. J.  Chem. Phys. 1953, 21, 1272. 
(2) Zimm, B. H. J .  Chem. Phys. 1956, 24, 269. 
(3) Verdier, P. H.; Stockmayer, W. H. J .  Chem. Phys. 1962, 36, 

227. 

300 K I 
0.4 I I I I I I 1 

a o  2.0 4.0 6.0 

t (Il l)  

Figure 6. Orientational autocorrelation function M2,ht( t )  under 
restricted motion. End B is allowed to be displaced within a 
sphere of radius 6o = 3 A only. The curves are found to converge 
to substantially higher values compared to those in Figure 4 where 
no constraint due to chain connectivity operates on the motion 
of end B. 

unless the overall external orientation of the chain is in- 
corporated into the calculations. The loss of orientation 
caused by external rotation is operative when the time 
scale of observation matches that of overall reorientation. 
In fact, in fluorescence anisotropy decay experiments 
carried out with labeled alkyl chains, in the time scale of 
observation which probably does not allow for external 
relaxation, the autocorrelation function was observed to 
remain higher than zero, for Cle31 

Discussion and  Conclusion 
Conformational characteristics of real polymeric chains 

are incorporated into the treatment of the local dynamics 
associated with the internal orientational rearrangements 
of finite sequences within the chain. The treatment de- 
veloped in the present study offers a convenient and re- 
alistic method for determining the elements of the time- 
delayed joint probability matrix P("(t) which fully de- 
scribes the conformational transitions of the investigated 
segment and may be used to calculate the time dependence 
of the internal orientational autocorrelation function 

The mathematical scheme developed in the present 
study is used to investigate the influence of factors such 
as neighbor correlations and constraints due to chain 
connectivity, on local dynamics. 

To assess the effect of neighbor correlations, the auto- 
correlation functions for sequences with pairwise-de- 
pendent bonds were compared to those for sequences with 
independent bonds. Results of calculations at  various 
temperatures are shown in Figure 4. The autocorrelation 
functions decay faster for sequences with independent 
bonds. The effect of pair dependence is not, however, as 
important as that arising from constraints operating at the 
ends of the motional unit (see below). 

Inasmuch as transitions between isomeric states were 
assumed to occur through saddle points in 2-dimensional 
energy maps, the present calculation scheme does not 
account for correlations beyond first neighbors. The 
consideration of higher order dependence between neigh- 
boring bonds in coordinated motion necessitates the con- 
struction of multidimensional energy maps. A detailed 
analysis of a specific motion was carried out by B l ~ m b e r g . ~ ~  
In his study, the simultaneous transition of three alter- 

Mz,int(t)* 



1376 Macromolecules 1987,20, 1376-1383 

(4) Verdier, P. H. J.  Chem. Phys. 1966, 45, 2118. 
(5) Monnerie, L.; Gdny, F. J.  Chim. Phys. 1969, 66, 1961. Gdny, 

F.; Monnerie, L. Ibid. 1969, 66, 1708. GBny, F.; Monnerie, L. 
J .  Polym. Sci., Polym. Phys. Ed. 1979, 17, 131, 147. 

(6) Helfand, E. J .  Chem. Phys. 1978, 69, 1010. Helfand, E.; 
Wasserman, Z.; Weber, T. A. Macromolecules 1980, 13, 526. 

(7) Hall, C. K.; Helfand, E. J.  Chem. Phys. 1982, 77, 3275. 
(8) Helfand, E. J .  Chem. Phys. 1971, 54, 4651. 
(9) Skolnick, J., Helfand, E. J .  Chem. Phys. 1980, 72, 5489. 

Helfand, E.; Skolnick, J. J .  Chem. Phys. 1982, 77, 5714. 
(10) Orwoll, R. A.; Stockmayer, W. H. Adu. Chem. Phys. 1969,15, 

305. 
(11) Valeur, B.; Jarry, J. P.; Gdny, F.; Monnerie, L. J .  Polym. Sci., 

Polym. Phys. Ed. 1975, 13, 667, 675, 2251. 
(12) Jones. A. A.: Stockmaver. W. H. J .  Polvm. Sci.. Polvm. Phvs. . ,  - I  

Ed. 1977, 15, 847. 
(13) Boyer, R. F. Rubber Chem. Technol. 1963,34, 1303. Schatzki, 

T. F. J .  Polvm. Sci. 1962. 57. 496: Polvm. Prewr. (Am. Chem. 
Soc., Diu. Folym. Chem.) 1965, 6(2), g46. 

(14) Baysal, B.; Lowry, B. A.; Yu, H.; Stockmayer, W. H. In Di- 
electric Properties of Polymers; Karasz, F. E., Ed.; Plenum: 
New York, 1972; p 329. 

(15) Stockmayer, W. H. Pure Appl. Chem. 1966, 15, 539. 
(16) Matsuo, K.; Kuhlmann, K. F.; Yang, W. H.; G&ny, F.; Stock- 

mayer, W. H.; Jones, A. A. J.  Polym. Sci, Polym. Phys. Ed. 
1977, 15, 1347. 

(17) Kramers, H. A. Physica 1940, 7, 284. 
(18) Glauber, R. S. J .  Math. Phys. 1963, 4, 294. 
(19) Anderson, J. E. J .  Chem. Phys. 1970, 52, 2821. 
(20) Bozdemir, S. Phys. Status Solidi B 1981, 103, 459; 104, 37. 
(21) Skinner, J. L. J .  Chem. Phys. 1983, 79, 1955; 1985, 82, 5232. 
(22) Jernigan, R. L. In Dielectric Properties of Polymers; Karasz, 

' 

F. E., Ed.; Plenum: New York, 1972; p 99. 
(23) Flory, P. J. Statistical Mechanics of Chain Molecules; Inter- 

science: New York, 1969. 
(24) Monnerie, L.; Lauprltre, F. Structure and Dynamics of Mo- 

lecular Systems Daudel, R., Ed.; D. Reidel: Dordrecht, 1986. 
(25) Bendler, J. T.; Yaris, R. Macromolecules 1978, 11, 650. 

Skolnick, J.; Yaris, R. Macromolecules, 1982, 15, 1041; 15, 
1046. 

(26) Hyde, P. D.; Waldow, D. A.; Ediger, M. D.; Kitano, T.; Ito, K. 
Macromolecules 1986,19, 2533. 

(27) This matrix is the transpose of the conventional time- 
dependent transition probability matrix of Markov chains, 
where the ijth element is related to the conditional passage 
from state i at epoch t to state j at epoch T with T > t. See, 
for example: Feller, W. An Introduction to Probability Theory 
and its Applications, 3rd ed.; Wiley: New York 1971; Vol I. 

(28) Abe, A.; Jernigan, R. L.; Flory, P. J. J .  Am. Chem. SOC. 1966, 
88, 631. 

(29) See, For example: Eyring, H. J.  Chem. Phys. 1935, 3, 107. 
Wynne-Jones, W. F. K.; Eyring, H. Zbid. 1935, 3, 492; Glas- 
stone, s.; Laidler, K. J.; Eyring, H. The Theory of Rate Pro- 
cesses; McGraw-Hill: New York, 1941; Cha ter 4. 

to the treatment of ref 9. Transformation to dimensions of 
l/(time), required in the present treatment, was made upon 
dividing by 1* sin2 6 ,  where E is the bond length and 6 is the 
supplemental bond angle. The numerical value of y was taken 
as the mean of the corresponding values of trans and gauche 
conformations. 

(31) Viovy, J. L.; Frank, C. W.; Monnerie, L. Macromolecules 1985, 
18, 2606. 

(32) Blomberg, C. Chem. Phys. 1979, 37, 219. 

(30) The front factor has dimensions of (length) P /time according 

Structure of Many-Arm Star Polymers: A Molecular Dynamics 
Simulation 

Gary S .  Grest,*+' Kurt Kremer,*§ and T. A. Wittent 
Corporate Research Science Laboratories, Exxon Research and Engineering Company, 
Annandale, New Jersey 08801, Znstitut fur Physik, Universitat Mainz, 0-6500 Mainz, 
Federal Republic of Germany, and Znstitut fur  Festkorperforschung der 
Kernforschungsanlage Julich, 0-51 70 Julich, Federal Republic of Germany. 
Received October 20, 1986 

ABSTRACT: We present a detailed simulation study of star polymers with many (6 I f 5 50) arms f. Each 
arm consists of N = 50,100, or 200 monomers. In most respects these show good agreement with the asymptotic 
scaling predictions of the Daoud-Cotton blob model. We report values for the universal ratios characterizing 
the scattering from such stars. We especially concentrate on many-arm properties and on deviations from 
recent scaling arguments and describe in detail anomalies in the structure factor. Because typical experimental 
systems have arm lengths that are on the border line to  the asymptotic behavior, we expect that our results 
are relevant for the interpretation of experiments for both star polymers and micellar solutions. 

I. Introduction 
Branched polymers are important in our understanding 

of gels and rubber. Star polymers, one special class of 
branched polymers, have only recently been more inten- 
sively studied' following the progress of synthesizing such 
systems which has been made during the last few years. 
Star polymers are macromolecules where linear homo- 
polymers are chemically attached to a seed or center 
molecule. The size of the seed is typically of the order of 
a bond length or somewhat larger but very small compared 
to the extension of the chains. Experimental stars were 
recently produced with up to 18 arms2 connected to a single 
center. While using linear polymers with associating end 
groups, one can even produce starlike structures with many 
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more arms.3 Theoretically the main interest up to now was 
concentrated on the asymptotic properties of stars in the 
limit of very long arms of N bonds per arm where the 
number of arms f is fixed. Although a scaling  the^@^ and 
several field theoretical approaches6-8 exist for such sys- 
tems, little is known theoretically about the scattering of 
such objects. The only numerical ~ t u d i e s ~ ~ ~ J ' J *  of these 
systems have concentrated on the critical exponents and 
the ratio of the mean-square radius of the star polymer to 
that of the linear polymer.12 They have not investigated 
the static and dynamic structure function. Even less is 
known for systems with relatively few bonds N but many 
arms f. For such systems scaling arguments become 
somewhat ambiguous, and no analytic treatment is 
available up to now. This regime is important in light of 
the recent progress in synthesizing new stars and is already 
relevant for the investigation of dilute micellar  structure^.^ 
For this reason, we have carried out a numerical and 
scaling study of star polymers in the regime where the 
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