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Abstract: We have performed molecular dynamics simulations of protein surface loops solvated
by explicit water, where a prime focus of the study is the small numbers (e.g., ∼100) of explicit
water molecules employed. The models include only part of the protein (typically 500-1000
atoms), and the water molecules are restricted to a region surrounding the loop. In this study,
the number of water molecules (Nw) is systematically varied, and convergence with a large Nw

is monitored to reveal Nw(min), the minimum number required for the loop to exhibit realistic
(fully hydrated) behavior. We have also studied protein surface coverage, as well as diffusion
and residence times for water molecules as a function of Nw. A number of other modeling
parameters are also tested. These include the number of environmental protein atoms explicitly
considered in the model as well as two ways to constrain the water molecules to the vicinity of
the loop (where we find one of these methods to perform better when Nw is small). The results
(for the root-mean-square deviation and its fluctuations for four loops) are further compared to
much larger, fully solvated systems (using ∼10 000 water molecules under periodic boundary
conditions and Ewald electrostatics) and to results for the generalized Born surface area (GBSA)
implicit solvation model. We find that the loop backbone can stabilize with a surprisingly small
number of water molecules (as low as five molecules per amino acid residue). The side chains
of the loop require a somewhat larger Nw, where the atomic fluctuations become too small if Nw

is further reduced. Thus, in general, we find adequate hydration to occur at roughly 12 water
molecules per residue. This is an important result because, at this hydration level, computational
times are comparable to those required for GBSA. Therefore, these “minimalist explicit models”
can provide a viable and potentially more accurate alternative. The importance of protein loop
modeling is discussed in the context of these, and other, loop models, along with other challenges
including the relevance of an appropriate free-energy simulation methodology for the assessment
of conformational stability.

I. Introduction
A great amount of work has been devoted in the past 20
years to understanding the function and determining the
structure (or structures) of protein loops. The latter is
particularly important in homology modeling where one
generates initially a partial structure (a template) of uncon-
nected chain segments of a target protein on the basis of the

known X-ray structure of a homologous protein (or proteins);
however, it still remains to determine the structure of the
connecting (missing) loops. This endeavor, which is carried
out by conformational search techniques or comparative
modeling, is not a trivial task and is an unsolved problem
for large loops;1-3 the structure prediction of loops constitutes
a challenge also in protein engineering.

Of special interest are surface loops that take part in
protein-protein and protein-ligand interactions; such loops
can form “lids” over active sites of proteins, and mutagenesis
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experiments show that residues within these loops are crucial
for substrate binding or enzymatic catalysis.4 Typically, these
loops are flexible, and their flexibility is essential for protein
function. Two general recognition mechanisms related to
flexibility have been defined,inducedandselected fit.Thus,
the conformational change between a free and a bound
antibody demonstrates the flexibility of the antibody com-
bining site, which typically includes hypervariable loops; this
provides an example of induced fit as a mechanism for
antibody-antigen recognition (see, for example, refs 5 and
6). Alternatively, theselected-fitmechanism has been sug-
gested, where a free loop interconverts among different
microstates in thermodynamic equilibrium, and one of them
is selected upon binding7 (a microstate is a limited region in
conformational space such as the helical region of a peptide).
While loop flexibility can be detected by multidimensional
nuclear magnetic resonance (NMR) and X-ray crystal-
lography (in terms of elevated B factors in the latter method),
using these methods to map the most stable microstates of
an unbound loop (i.e., those with the lowest free energy) is
problematic, and one has, therefore, to resort to molecular
modeling techniques.

The interest in surface loops has yielded extensive
theoretical work, where one avenue of research has been the
classification of loop structures.7,8-15 However, to understand
various recognition mechanisms such as those mentioned
above, it is mandatory to be able to predict the structure of
a loop by theoretical/computational procedures. The com-
monly used methodologies in this category are comparative
modeling based on known loop structures from the Protein
Data Bank (PDB),16,17 an energetic modeling (based on a
force field), and methods that are hybrids of these two
approaches. However, mapping the most stable microstates
can only be achieved with the energetic approach that
consists of calculating the loop-loop and loop-protein
interaction energies. To be able to apply such calculations
to a large number of loops, the entire protein structure has
typically been kept fixed in its X-ray structure (and some-
times only part of it has been considered). Because of the
exposure of surface loops to the solvent, the development
of adequate modeling of solvation is mandatory. The most
stable microstates can then be generated by a combination
of conformational search techniques (simulated annealing,
the bond relaxation algorithm, the local torsional deformation
method, etc.); thermodynamic sampling methods, such as
molecular dynamics (MD) simulation or Monte Carlo; and
methods for calculating the free energy.18-31

Modeling of the solvent is of special importance. In some
of the earlier studies, the solvation problem was not addressed
at all, while others only use a distance-dependent dielectric
function (i.e.,ε ) rij is substituted in the Coulomb potential,
E ) qiqj/[rijε], making the interactions decay more rapidly
asrij

-2). Better treatments of solvation were applied by Moult
and James23 and Mas et al.32 A systematic comparison of
solvation models was first carried out by Smith and Honig,33

who tested theε ) r model against results obtained by the
finite difference Poisson Boltzmann calculation including a
hydrophobic term; the implicit solvation model of Wesson
and Eisenberg34 with ε ) r was also studied by them. Later,

the generalized Born surface area (GBSA) model35 was
applied to loops of ribonuclease A36 and has been found by
Blundell’s group to discriminate better than other models
between the native loop structures and close-to-native
“decoy” structures.37,38Very recently, an extensive study of
loops was carried out by Jacobson et al.,39 who used the
surface GB40 and a nonpolar solvation model41 (SGB-NP)
with the OPLS force field.42 Zhang et al.43 have tested their
knowledge-based statistical potential, DFIRE (distance-
scaled, finite ideal gas reference state), by applying it to the
loop sets studied in refs 37-39. Another interesting loop
prediction algorithm has been suggested by Xiang et al.,44

and finally, we mention our loop studies, using a simplified
implicit model.30,31

The popularity of implicit solvent models for loops stems
from their relative simplicity and the fact that the loops are
applicable to a wide range of conformational search tech-
niques, in particular, those that are based on energy
minimization. At least in principle, an energy-minimized
implicit model can be used as a gauge of loop stability (i.e.,
the free energy), because the solvent coordinates have been
“averaged out”. (Note, however, that this still does not
account for the very important free-energy contribution
associated with the movement of the loop atoms within a
microstate.) On the other hand, explicit solvationsthe more
accurate modelingsis computationally expensive and allows
application of limited types of search techniques. Therefore,
systematic studies of loop structure prediction with explicit
water have not been carried out; however, certain problems
involving loops have been studied with explicit water.45

While the quality of these implicit models for loops has
not been compared, most of them were found to be adequate
for predicting the backbone structure of loops (in the known
protein framework) of up to nine residues [i.e., a prediction
within 1 Å root-mean-squared deviation (RMSD) from the
X-ray crystal structure23]. However, the correlation between
low free energy and low RMSD of structures generated by
conformational search were found to be unsatisfactory (in
particular, for highly charged loops), meaning that implicit
modeling, in most cases, is not suitable for mapping the most
stable microstates, and for that, one will have to resort to
explicit solvation models. We have a special interest in such
problems, as discussed in refs 30, 31, and 46 and in the
Conclusions section.

Therefore, the objective of this article is to examine the
validity (and efficiency) of explicit solvation models defined
within the framework of the limited model mentioned above,
where the loop moves in the presence of a fixed protein
structure. Here, the loop is “capped” with a number of water
molecules (Nw), and our aim is to determine the minimal
Nw which still leads to reliable results. More specifically,
we use the TIP3P model of water47 and simulate the protein-
loop-water system by MD,48,49 where only the loop atoms
and the surrounding waters are allowed to move while the
rest of the protein atoms are kept in their X-ray coordinates;
moreover, to further save computer time, we retain in the
model only the part of the protein that is close to the loop.
To gauge performance, the RMSDs of the heavy backbone
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and side-chain atoms from the X-ray structure are calculated
together with the RMSD fluctuations and other quantities.

For the test cases studied here, the X-ray backbone loop
structure is well-determined; that is, its atoms are defined
with relatively low B factors; therefore, if the simulation
starts from the X-ray structure, for a large enoughNw, one
would expect the simulated backbone to demonstrate stabil-
ity, that is, to remain close to this structure for long
simulation times, while for a smallNw, the backbone might
escape to another microstate. On the other hand, some of
the coordinates of the side-chain atoms are typically poorly
resolved (high B factors), and in general, the side-chain
environment in the simulation could be expected to mimic
the experimental solution environment better than that of the
crystal; therefore, for the side chains, one would not expect
the simulation to always reproduce the crystallographic data.
However, asNw is increased, the structure of the simulated
side chains is expected to stabilize at some microstate. These
are some of the criteria according to which the results are
analyzed. (It should be emphasized, however, that during a
long enough simulation the loop will change microstates,
and therefore, such an analysis should be carried out with
caution.) Finally, as further criteria to test the validity of the
restricted (or “minimalist”) loop models studied here, we
solvate the corresponding (entire) proteins with water under
periodic boundary conditions, simulate them by MD, and
compare the RMSD and fluctuations of the loops to those
obtained from the restricted solvation models.

In this work, extensive MD simulation studies are carried
out for four loops ranging in size from 8 to 10 residues; the
loops are taken from the three proteins ribonuclease A
(RNase A), ser-proteinase, and proteinase. (We also report
results from less extensive tests conducted on several other
loops.) As mentioned above, differentNw’s are tested for
each loop (and other modeling parameters discussed below),
and the minimalNw [Nw(min)] which reproduces the large
Nw behavior is determined. WhileNw(min) depends on
various properties of the loop and its associated nearby
protein environment, for the four primary loops studied, we
find Nw(min) ∼ 12 per residue, which (using the AMBER96
force field50 programmed in the package TINKER51) requires
comparable computer time to running MD based on the
implicit solvent, GBSA.35 It is also shown that for two loops
the GBSA results deviate significantly from those obtained
with the explicit solvent. While these results are expected
to be typical, they should be validated for each loop studied.

It should be pointed out that approximate explicit solvation
models, where only part of the protein (around the active
site) is considered (and solvated), have been suggested
before. One of the first was the stochastic boundary model
of Karplus’ group, where the region of interest (including
the protein and the solvent) is divided into subregions of
decreasing importance;52 we have used this model for
calculating the backbone entropy of loops in the protein ras.53

In many other studies of ligands in active sites, caps of water
molecules were built around these sites, with the number of
water molecules typically increasing as computers have
become more powerful. For example, in 1986, Bash et al.54

used only 168 waters to cover the active site of thermolysine

in their calculations of the relative free energy of binding of
two inhibitors, whereas in 1991, Merz used 300 waters for
calculating the binding of CO2 to human carbonic anyhdrase
II.55 In 1993, Miyamoto and Kollman used 205 waters to
solvate the active site of streptavidin in their calculation of
the absolute free energy of binding of biotin and other similar
ligands to this protein.56 In 1997, Jorgensen’s group capped
482 waters around the active site of trypsin and calculated
the binding affinities of trypsin-benzamidine complexes;57

however, in later publications of this group, caps including
up to 1600 waters were used.58 In most of these works, a
systematic investigation of the effect of the number of water
molecules has not been carried out. Our present study has
been largely motivated by the work of Steinbach and
Brooks,59 who studied, by MD, the change in the RMSD of
protein structures from their X-ray structures with an
increasing number of water molecules; they found that a
relatively small number of waters led to the behavior of the
fully solvated system.

II. Methods
II.1. Models. Our investigations are focused on the solvation
of protein surface loops with small numbers of explicit water
molecules,Nw. The protein portion of these models is further
limited to just the loop atoms, and only the protein atoms
belonging to residues that are close to the loop. We will refer
to this as the “partial-protein model”. To test the approxima-
tions inherent in this model (which are chiefly limited
solvation, a reduced protein environment, and lack of
flexibility in the template), we also model the entire protein,
solvated under periodic boundary conditions with particle
mesh Ewald electrostatics. This model is referred to as the
“full-protein model”. Both models will be described in detail
in the following sections.

All computational work associated with the partial-protein
modeling (i.e., structure preparation and simulations) was
performed using the TINKER software package (version
4.2),51 which was modified to suit our specific needs. The
computational work for the full-protein models (structure
preparation, simulations, and analysis) was performed using
a variety of programs in the AMBER software package
(version 8). For both models, we used the AMBER96 force
field,50 where His is in the doubly protonated state (charge
) +1) and four other residues are also modeled in their
respective neutral pH charged states, Lys (+1), Arg (+1),
Asp (-1), and Glu (-1). The water molecules are modeled
with the three-site TIP3P potential.47

II.2. Construction of the Partial-Protein Model. The
starting coordinates for the partial-protein model are taken
from the PDB X-ray structure (where hydrogen atoms and
disulfide bonds are added in the usual manner). As stated
above, the loop atoms, and only the protein atoms that are
close to the loop, are included in the model. The nonloop
atoms which are retained in the model are collectively
referred to as the “template”. To construct the template (see
also Figure 1), the center of mass of the loop backbone atoms
is calculated as a reference point. We denote the coordinates
of this point asxcmb. A distance (Rtemp) is chosen such that
residues that are greater thanRtempfrom xcmb are not included
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in the template. More specifically, if any atom in a protein
residue is less than the distanceRtemp, from xcmb, the entire
residue is included in the template. Otherwise, the residue
is eliminated. Obviously, the choice ofRtemp will determine
the number of environmental protein atoms to be included
in the model. Atom numbers for variousRtemp values are
given in Table 1 for each of the loops studied.

The starting (PDB) coordinates for the loop and template
atoms are relaxed to a nearby geometry. This minimization
is carried out using additional harmonic positional restraints
(k ) 5 kcal mol-1 Å-2), which are applied to all heavy atoms.
This eliminates bad atomic overlaps and strains in the original
structure, while keeping the atoms still reasonably close to
the PDB coordinates. These resulting relaxed coordinates are
referred to as the “X-ray reference coordinates” and are
denoted asXref. [Note thatxcmb (above) is a single point in
3D space, whereasXref specifies the whole coordinate set

for a group of atoms.] The loop coordinates from this
configuration are used in the RMSD calculations, described
below.

As outlined in the Introduction, MD simulations of the
loop are carried out in the presence of the nearby template
atoms, along with theNw water molecules. Specifically, the
coordinates of the loop atoms evolve in time under the
influence of interactions with the template atoms, the water
molecules, and each other. The water molecules are also
mobile; they interact with each other, the protein atoms (in
both the loop and template), and the boundary of a contain-
ment region (described below). The template atoms, however,
are fixed in these simulations at their respective coordinates
in Xref (where the purpose of this approximation is to increase
the computational efficiency, as it is then unnecessary to
calculate template-atom-template-atom interactions).

II.3. Solvation of the Partial-Protein Model. To make
best use of (the solvating effects of) the limited number of
water molecules, they are restricted to a region that is close
to the loop. This also prevents evaporation. The situation is
similar to “capping” an active site, where one wishes to keep
water molecules near the most critical region of the model
investigation. Unlike many active sites, however, which tend
to be concave, a solvation region around a surface loop tends
to be more convex and, thus, can present more of a challenge.
We have implemented two methods to restrain the water
molecules to the vicinity of the loop. One involves a (semi-)
spherical restraining region, which we call the SPH restraint.
The other is a nearest-loop-atom-based restraint, which we
call the NLA restraint. Both will be described in detail below.

II.3.1. Spherical Restraining Region. In the SPH re-
straint, water molecules are restrained with a flat-welled half-
harmonic potential (force constant,k ) 5 kcal mol-1 Å-2),
based on the distance from the “center” of the loop region.
That is, the distance of each water molecule (in practice,
the oxygen atom) is measured from a restraining center (xsph).
If this distance is greater than a prescribed distance,Rcap, a
harmonic restoring force is applied; otherwise, the restraining
force is zero.

A reasonable restraining center could be, for example, the
center of mass of the loop backbone atoms (i.e.,xsph) xcmb).
The choice ofRcap, on the other hand, should be roughly
based on the number (Nw) of water molecules used. It is
important to note, however, that a range of reasonableRcap

values can be found; but obviously, for largeNw’s, small
values ofRcap would be undesirable. (This scenario would
be evidenced, for example, by a large average value for the
restraining potential.) Some examples ofRcap at various
values ofNw are available in Tables 2-7, where, in general,
Rcap increases withNw. In our modeling, the restraining
volume is typically quite large for the given number of water
molecules (i.e., much of the available volume is empty). A
more detailed discussion describing the nature of the solva-
tion within the partial-protein model will be given in section
III.

In most cases, we have taken values ofRcap whereRcap g
Rtemp. (As described above,Rtemp is the distance value used
to determine the size of the template.) However, for large-
enough values ofRcap, water molecules can migrate away

Figure 1. Diagram showing the region of the protein that is
retained (the “template”) in the partial-protein model. The loop
is represented as the heavy black curve. The remainder of
the protein is shown as a gray blob. The center of mass of
the loop backbone, xcmb, is located at the position marked as
X. The protein template is “cut out” at the dashed circle (a
sphere in three dimensions), which is defined by the distance
Rtemp measured from xcmb. All protein residues that are inside
this region are considered in the model, thus defining the
nearby protein environment for the loop.

Table 1. Diffusion Properties of Water Molecules
Calculated for the Partial-Protein Model of RNase A
[64-71]a

Nw Rcap (Å) 〈Nsurf〉 〈Nsurf/Nw〉 Dall Dsurf τall (ps) τsurf (ps)

300 20 103.2 0.344 4.96 2.61 6.8 12.9
200 19 96.8 0.484 4.03 2.53 8.4 13.3
120 18 79.1 0.659 2.73 1.98 12.4 17.0

70 17 57.8 0.825 1.71 1.43 19.8 23.6
50 17 44.4 0.888 1.28 1.12 26.5 30.2

a Nw is the number of water molecules. Rcap is the radius of the
spherical solvent restraining region (SPH restraint). The same protein
template (Rtemp ) 15 Å) was used in all cases. 〈Nsurf/Nw〉 is the
(average) fraction of water molecules observed at the surface of the
protein. Dall is the diffusion constant calculated for all Nw water
molecules. Dsurf is the diffusion constant calculated for just the water
molecules at the protein surface. Units for Dall and Dsurf are 10-5 cm2/
s. τall and τsurf are estimated residence times defined by the time for
a water molecule to diffuse a distance of 4.5 Å. τall is calculated for
all Nw water molecules, and τsurf is for the protein surface water only.
Statistical uncertainties in 〈Nsurf/Nw〉, Dall (Dsurf), and τall (τsurf) are
typically less than 0.003, 0.05 × 10-5 cm2/s, and 0.5 ps, respectively.
Other details and definitions are given in the text.
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from the loop, around to the “back side” of the template,
where their solvation effect is wasted. For this reason, we
actually choose a restraining center such that

wherexcm is the overall center of mass of the loop-template
system. Here, the effect is to shift the center of the restraining
sphere (xsph) toward the “loop side” of the loop-template
system (see Figure 2). This serves to keep the water
molecules away from the back of the template, because the
van der Waals radii of the “back side” template atoms will
now be closer to the wall of the restraining sphere. At the
same time, there will be sufficient room for water on the
“loop side” of the template.

II.3.2. Nearest-Loop-Atom-based Restraint.A slightly
more elaborate restraint option for the water molecules is to
employ a flat-welled half-harmonic potential (k ) 5 kcal
mol-1 Å-2) that is based on the distance to the nearest loop
atom (for an example, see ref 60). Specifically, for each water
molecule, the distance to the nearest loop atom is calculated
and then compared to a prescribed distance value,Rnla. If
this distance is less thanRnla, then there are no restraining
forces. If the distance is greater thanRnla, then a harmonic
restoring force is applied to (the oxygen of) the water
molecule and is directed along the vector between the water
and the nearest loop atom (see Figure 3).

The NLA restraint is arguably advantageous compared to
the SPH restraint, because the implementation can be

Table 2. Description of Loops and Modeling Parametersa

protein
number of

atoms: protein N w
pbc loop residues sequence R

number of
atoms: loop Rtemp

number of atoms:
loop + template

RNase A (1rat) 1860 6808 64-71 (8) ACKNGQTN 3.2 107 14, 15, 16 526, 572, 590
ser-proteinase (2ptn) 3223 9320 143-151 (9) NTKSSGTSY 4.9 117 13, 14, 15 498, 578, 738
proteinase (2apr) 4714 12393 128-137 loop1 (10) DTITTVRGVK 4.3 158 11, 13, 15 497, 731, 1035
proteinase (2apr) 4714 12393 188-196 loop2 (9) IDNSRGWWG 4.5 143 11, 13, 15 569, 775, 1034

a Atom numbers are provided for different portions of the system: the entire protein, the loop atoms only, and the loop together with the
template. The number of atoms in the latter depends on the template radius parameter Rtemp (in Å), where the values separated by commas
give rise to the corresponding (comma separated) atom numbers. N w

pbc is the number of water molecules used in the full-protein simulations.
Loop sequences are given with the charged residues as bold-faced letters. R is the ratio between the length of the stretched loop and the
distance between the CR of the first and last residues of the loop.

Table 3. Partial-Protein Model Results for RNase A [64-71]a

Nw Rtemp

water
restraint

Rcap

(or Rnla) RMSD(BB) RMSD(SC) σ(BB) σ(SC) σw(BB) σw(SC)

300 15 SPH 20 0.57 (5) 1.31 (4) 0.19 (6) 0.48 (3) 0.14 (1) 0.28 (1)
200 15 SPH 19 0.54 (2) 1.13 (11) 0.17 (1) 0.38 (8) 0.15 (1) 0.24 (2)
200 15 SPH 16 0.55 (2) 1.23 (8) 0.17 (2) 0.44 (5) 0.15 (1) 0.26 (2)
200 16 SPH 19 0.56 (3) 1.22 (12) 0.17 (1) 0.37 (5) 0.15 (1) 0.25 (2)
120 14 SPH 18 0.64 (23) 1.21 (19) 0.18 (4) 0.31 (6) 0.15 (2) 0.21 (5)
120 15 SPH 18 0.54 (4) 1.02 (6) 0.17 (2) 0.29 (3) 0.15 (1) 0.20 (3)
120 15 NLA 8.5 0.67 (19) 1.09 (8) 0.24 (10) 0.36 (6) 0.15 (1) 0.23 (3)
120 16 SPH 18 0.61 (16) 1.35 (4) 0.21 (7) 0.34 (2) 0.14 (1) 0.23 (2)
100 15 SPH 16 0.52 (1) 1.00 (11) 0.15 (1) 0.27 (8) 0.14 (1) 0.20 (3)
70 14 SPH 14 0.50 (2) 1.27 (14) 0.15 (1) 0.30 (4) 0.13 (1) 0.21 (2)
70 15 SPH 17 0.50 (4) 1.02 (14) 0.17 (3) 0.26 (8) 0.14 (1) 0.17 (3)
70 15 NLA 7 0.58 (14) 1.00 (8) 0.19 (9) 0.27 (5) 0.14 (0) 0.19 (2)
70 16 SPH 16 0.52 (4) 1.40 (8) 0.18 (3) 0.33 (7) 0.15 (2) 0.21 (3)
50 15 SPH 17 0.50 (3) 0.99 (9) 0.18 (3) 0.22 (3) 0.15 (1) 0.15 (1)
50 15 NLA 7 0.49 (1) 1.10 (10) 0.14 (1) 0.28 (3) 0.12 (1) 0.18 (2)
50 15 SPH 16 0.57 (13) 1.09 (38) 0.21 (6) 0.29 (20) 0.15 (2) 0.16 (2)
40 15 SPH 16 0.55 (10) 1.10 (7) 0.20 (9) 0.27 (5) 0.14 (3) 0.16 (1)
30 15 SPH 16 0.55 (8) 1.07 (6) 0.21 (7) 0.21 (5) 0.15 (4) 0.15 (3)
20 15 SPH 16 0.51 (5) 0.99 (5) 0.19 (4) 0.17 (2) 0.14 (2) 0.13 (1)
10 15 SPH 16 0.67 (10) 1.21 (5) 0.22 (5) 0.18 (3) 0.18 (3) 0.15 (2)
5 15 SPH 16 1.03 (39) 1.59 (41) 0.27 (6) 0.24 (10) 0.21 (3) 0.16 (2)
0 15 2.30 (85) 2.60 (82) 0.48 (36) 0.44 (37) 0.18 (2) 0.13 (1)
GBSA 15 1.93 (48) 2.71 (62) 0.54 (11) 0.70 (16) 0.29 (5) 0.32 (4)
a Nw is the number of water molecules. Rtemp (in Å) is a radius parameter defining the size of the template. The water restraint method is

either “SPH” (spherical restraining region) or “NLA” (nearest-loop-atom-based restraint), which are described (respectively) by the parameters
Rcap or Rnla (Å). The RMSD values (eq 2, averaged over all five trajectories) for the loop backbone (BB) and side-chain (SC) atoms are denoted
by RMSD(BB) and RMSD(SC), respectively. The corresponding RMSD fluctuations (eqs 3 and 6, averaged over all five trajectories) are denoted
σ(BB) and σ(SC), while the window-averaged RMSD fluctuations are denoted as σw(BB) and σw(SC). The numbers in parentheses are the
standard deviations of the individual results from the five trajectories. For example, 1.31 (4) means that the standard deviation is 0.04, and 1.09
(38) implies a standard deviation of 0.38. All RMSD values and their fluctuations, σ, are reported in Å.

xsph) xcmb + (Rcap- Rtemp)(xcmb - xcm)/|(xcmb - xcm)| (1)
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somewhat less-dependent on the loop-template geometry, as
it is able to effect a “glovelike” fit to the loop regardless of
the conformation. Again, the choice ofRnla should be based
roughly on the number of water molecules used in the model
(and noting again, however, that acceptable performance can
be obtained over a range of reasonable values). For very
smallNw’s, we often chooseRnla’s to be roughly two water-
molecule diameters, plus a little fluctuation room (e.g., 7
Å). For largerNw’s, Rnla is increased somewhat. In general,
the restraining volume is typically still large for the given
number of water molecules.

II.4. Details of the Partial-Protein Simulations. Above,
we described the initial preparation (from PDB coordinates)
of the loop-template system, thus resulting in the coordinates
Xref. A cluster ofNw water molecules is then added to this
system. The center of mass of the water cluster is initially
positioned, away from the protein atoms (such that there are
no van der Waals overlaps), in the direction of (xcmb - xcm)/

|(xcmb - xcm)| (i.e., on the “loop side” of the loop-template
system). The positions of the water molecules are then energy
minimized, keeping all protein atoms fixed atXref (and
subject to the water restraints described above). Following
this minimization, 300 ps of MD simulation is performed to
equilibrate the water molecules, keeping the protein atoms
fixed atXref. The first 50 ps is run at 600 K, followed by 50
ps at 450 K. These higher temperatures allow the water
molecules to spread out and explore the entire protein surface
(within the allowable restraining volume). The remaining 200
ps is run at 300 K.

As mentioned above, the main (production) MD simula-
tions consist of the moveable loop atoms and water molecules
(subject to the SPH or NLA restraints), in the presence of
the fixed template. Therefore, following the above equilibra-
tion, the protein loop atoms are allowed to move (along with
the water) and are equilibrated (at 300 K) for 30 ps. The
production MD simulations are performed at 300 K and are

Table 4. Partial-Protein Model Results for Ser-Proteinase [143-151]a

Nw Rtemp

water
restraint

Rcap

(or Rnla) RMSD(BB) RMSD(SC) σ(BB) σ(SC) σw(BB) σw(SC)

300 13 SPH 20 0.69 (1) 1.51 (3) 0.14 (1) 0.26 (2) 0.13 (1) 0.20 (1)
200 13 SPH 19 0.69 (1) 1.53 (2) 0.14 (1) 0.25 (2) 0.13 (0) 0.20 (1)
200 15 SPH 19 0.69 (1) 1.44 (3) 0.12 (0) 0.26 (2) 0.12 (0) 0.20 (1)
120 13 SPH 18 0.68 (1) 1.51 (7) 0.14 (1) 0.29 (3) 0.12 (1) 0.20 (1)
120 13 NLA 8.5 0.67 (1) 1.50 (7) 0.13 (1) 0.26 (3) 0.12 (1) 0.19 (1)
120 14 SPH 18 0.67 (3) 1.54 (11) 0.14 (1) 0.29 (3) 0.12 (1) 0.20 (1)
120 15 SPH 18 0.64 (1) 1.39 (8) 0.12 (1) 0.27 (2) 0.11 (1) 0.19 (1)
70 13 SPH 17 0.80 (11) 1.49 (13) 0.22 (6) 0.32 (4) 0.15 (2) 0.18 (1)
70 13 NLA 7 0.69 (3) 1.46 (3) 0.17 (3) 0.28 (3) 0.13 (1) 0.20 (1)
70 14 SPH 17 0.83 (10) 1.57 (15) 0.25 (5) 0.37 (13) 0.16 (1) 0.19 (1)
70 14 NLA 7 0.65 (1) 1.40 (4) 0.13 (1) 0.27 (3) 0.12 (1) 0.19 (1)
50 13 SPH 17 1.28 (40) 1.88 (32) 0.30 (7) 0.35 (7) 0.17 (4) 0.17 (3)
50 13 NLA 7 0.75 (5) 1.55 (5) 0.21 (6) 0.32 (1) 0.15 (1) 0.19 (1)
GBSA 13 0.71 (3) 1.52 (9) 0.18 (2) 0.31 (2) 0.16 (1) 0.24 (2)
a The various parameters are defined in the captions of Table 3.

Table 5. Partial-Protein Model Results for Proteinase [128-137] (Loop 1)a

Nw Rtemp

water
restraint

Rcap

(or Rnla) RMSD(BB) RMSD(SC) σ(BB) σ(SC) σw(BB) σw(SC)

300 13 SPH 20 0.74 (3) 2.19 (12) 0.12 (1) 0.37 (11) 0.09 (1) 0.17 (4)
200 13 SPH 19 0.73 (2 2.16 (19) 0.12 (0) 0.40 (7) 0.10 (1) 0.21 (5)
120 13 SPH 18 0.66 (2) 2.31 (14) 0.12 (2) 0.30 (7) 0.10 (1) 0.14 (3)
120 15 SPH 18 0.71 (5) 2.25 (13) 0.12 (1) 0.18 (3) 0.10 (1) 0.12 (2)
70 11 SPH 17 0.72 (2) 2.19 (2) 0.10 (0) 0.22 (3) 0.09 (0) 0.11 (2)
70 11 NLA 7 0.70 (3) 2.29 (13) 0.09 (1) 0.27 (5) 0.08 (0) 0.13 (2)
70 13 SPH 17 0.67 (3) 2.41 (8) 0.11 (1) 0.12 (3) 0.09 (1) 0.08 (1)
70 13 NLA 7 0.67 (3) 2.33 (6) 0.12 (1) 0.20 (3) 0.10 (1) 0.11 (2)
70 15 SPH 17 0.74 (3) 2.18 (12) 0.08 (1) 0.12 (4) 0.07 (1) 0.08 (1)
70 15 NLA 7 0.72 (4) 2.21 (11) 0.10 (1) 0.15 (5) 0.08 (1) 0.10 (3)
50 13 SPH 17 0.66 (2) 2.41 (3) 0.10 (1) 0.13 (1) 0.09 (1) 0.08 (1)
50 13 NLA 7 0.63 (1) 2.43 (9) 0.10 (1) 0.12 (6) 0.09 (1) 0.07 (1)
40 13 SPH 16 0.68 (4) 2.34 (16) 0.09 (1) 0.11 (3) 0.08 (1) 0.08 (1)
30 13 SPH 16 0.70 (4) 2.43 (4) 0.09 (2) 0.11 (2) 0.07 (1) 0.07 (0)
20 13 SPH 16 0.72 (5) 2.46 (6) 0.21 (6) 0.32 (1) 0.15 (1) 0.19 (1)
10 13 SPH 16 0.89 (11) 2.63 (9) 0.11 (4) 0.13 (4) 0.07 (1) 0.08 (1)
5 13 SPH 16 0.84 (17) 2.56 (12) 0.07 (1) 0.11 (6) 0.06 (1) 0.07 (1)
0 13 1.08 (13) 2.65 (24) 0.07 (4) 0.11 (2) 0.05 (1) 0.09 (2)
GBSA 13 0.79 (8) 2.88 (14) 0.18 (2) 0.31 (2) 0.16 (1) 0.24 (2)
a The various parameters are defined in the captions of Table 3.
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run to a length of 5 ns. Five independent 5 ns production
runs are carried out for each system investigated.

Other important simulation details are as follows. The
velocity form of the Verlet algorithm61 is used to integrate
the equations of motion with a time step of 1 fs. The
RATTLE62 algorithm is used to fix all bonds involving
hydrogen atoms in the loop and to maintain the rigid
geometry of the TIP3P water molecules. The temperature is
maintained using a Berendsen thermostat63 (weak coupling
method) with a time constant of 0.1 ps. No distance-based
cutoffs are applied to the nonbonded [Lennard-Jones (LJ)
and Coulombic] interactions.

As mentioned in the Introduction, the explicit water partial-
protein results are compared with results obtained from MD
calculations carried out with the GBSA implicit solvation
model of Still and co-workers,35 as implemented within
TINKER (using the same simulation parameters described
above).

II.5. The Full-Protein Model and Simulations. Starting
with the PDB coordinates (with added hydrogens and
disulfide bonds), the entire protein was solvated in a
rectangular box, giving a 10 Å (11 Å for ser-proteinase)
buffer distance to each wall of the box, as implemented in
LEaP. All of the crystallographic waters for ser-proteinase,
and some of the waters for proteinase (the interior waters),
were kept from the PDB files. Counterions (Na+ or Cl-)
were added to make the overall system charge neutral. The
resulting numbers of water molecules are given for each
protein in Table 1 (denotedNw

pbc).
To eliminate any bad contacts/strains, the entire system

is energy minimized with harmonic positional restraints (k
) 100 kcal mol-1 Å-2) applied to all protein atoms. This is
followed by a second minimization under weaker positional
restraints (k ) 10 kcal mol-1 Å-2). The coordinates resulting
from these minimizations are used as a starting point for the
MD simulations. They are also taken as the “X-ray reference

Table 6. Partial-Protein Model Results for Proteinase [188-196] (Loop 2)a

Nw Rtemp

water
restraint

Rcap

(or Rnla) RMSD(BB) RMSD(SC) σ(BB) σ(SC) σw(BB) σw(SC)

300 13 SPH 20 0.63 (44) 1.50 (50) 0.12 (1) 0.37 (11) 0.09 (1) 0.17 (4)
200 13 SPH 19 0.49 (3) 1.45 (19) 0.18 (5) 0.43 (11) 0.12 (0) 0.23 (1)
120 13 SPH 18 0.46 (4) 1.42 (18) 0.15 (2) 0.32 (10) 0.11 (1) 0.17 (2)
120 15 SPH 18 0.54 (6) 1.69 (36) 0.16 (1) 0.43 (15) 0.11 (1) 0.17 (2)
120 15 NLA 8.5 0.52 (7) 1.67 (41) 0.16 (2) 0.36 (12) 0.12 (1) 0.19 (4)
70 11 SPH 17 0.45 (9) 1.63 (6) 0.18 (12) 0.24 (6) 0.11 (1) 0.16 (2)
70 11 NLA 7 0.44 (2) 1.57 (10) 0.15 (2) 0.29 (2) 0.11 (1) 0.17 (2)
70 13 SPH 17 0.65 (42) 1.95 (36) 0.19 (8) 0.24 (6) 0.12 (2) 0.15 (2)
70 13 NLA 7 0.52 (5) 1.54 (17) 0.13 (1) 0.25 (7) 0.12 (1) 0.17 (5)
70 15 SPH 17 0.46 (5) 2.25 (8) 0.12 (1) 0.23 (10) 0.10 (0) 0.15 (1)
70 15 NLA 7 0.53 (6) 1.73 (39) 0.18 (8) 0.39 (15) 0.12 (2) 0.18 (4)
50 13 SPH 17 0.45 (4) 1.84 (19) 0.14 (2) 0.25 (5) 0.11 (1) 0.13 (2)
50 13 NLA 7 0.57 (13) 1.46 (20) 0.17 (5) 0.22 (4) 0.11 (1) 0.13 (3)
GBSA 13 1.16 (50) 2.86 (70) 0.32 (7) 0.56 (26) 0.17 (2) 0.26 (3)
a The various parameters are defined in the captions of Table 3.

Table 7. Comparison of the Partial-Protein and Full-Protein Model Resultsa

Nw (or N w
pbc) protein model superpose RMSD(BB) RMSD(SC) σ(BB) σ(SC) σw(BB) σw(SC)

RNase A [64-71]
6808 full-protein yes 0.61 (13) 1.62 (39) 0.18 (8) 0.46 (22) 0.11 (2) 0.22 (2)
300 partial-protein Rtemp ) 15 Å yes 0.42 (5) 1.03 (5) 0.15 (6) 0.37 (3) 0.11 (0) 0.19 (1)
300 partial-protein Rtemp ) 15 Å no 0.57 (5) 1.31 (4) 0.19 (6) 0.48 (3) 0.14 (1) 0.28 (1)

Ser-Proteinase [143-151]
9320 full-protein yes 0.57 (13) 1.33 (22) 0.15 (7) 0.29 (11) 0.12 (2) 0.17 (2)
300 partial-protein Rtemp ) 13 Å yes 0.44 (1) 1.12 (3) 0.10 (2) 0.22 (1) 0.09 (1) 0.15 (1)
300 partial-protein Rtemp ) 13 Å no 0.69 (1) 1.51 (3) 0.14 (1) 0.26 (2) 0.13 (1) 0.20 (1)

Proteinase Loop 1 [128-137]
12 393 full-protein yes 1.04 (20) 2.47 (46) 0.24 (9) 0.54 (9) 0.13 (4) 0.22 (6)
300 partial-protein Rtemp ) 13 Å yes 0.59 (2) 2.00 (12) 0.10 (2) 0.34 (10) 0.08 (1) 0.13 (3)
300 partial-protein Rtemp ) 13 Å no 0.74 (3) 2.19 (12) 0.12 (1) 0.37 (11) 0.09 (1) 0.17 (4)

Proteinase Loop 2 [188-196]
12 393 full-protein yes 0.72 (27) 1.64 (36) 0.17 (6) 0.50 (15) 0.10 (1) 0.24 (6)
300 partial-protein Rtemp ) 13 Å yes 0.48 (33) 1.29 (39) 0.17 (10) 0.43 (14) 0.09 (1) 0.18 (2)
300 partial-protein Rtemp ) 13 Å no 0.63 (44) 1.50 (50) 0.12 (1) 0.37 (11) 0.09 (1) 0.17 (4)

a Nw and N w
pbc denote the number of water molecules used in the partial- and full-protein models, respectively. Results for the partial-protein

model were obtained using the spherical restraining method with a radius parameter of Rcap ) 20 Å in all cases. The superpose column indicates
whether RMSD values were minimized by superposing structures (see text). Other parameters are defined in the caption of Table 3.
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coordinates”, used in the RMSD calculations. Several stages
of MD equilibration are performed in addition to the
production runs. All MD simulations are carried out under
periodic boundary conditions, with a bath temperature of 300
K. Most of these simulations are also run under constant
pressure (p) conditions, wherep in all of these cases is set
to 1 atm.

In the first stage of equilibration, the system is simulated
for 10 ps at constant volume with the protein atoms under
positional restraints (k ) 10 kcal mol-1 Å-2). The next stage
consists of 40 ps of constant pressure simulation, again with

the protein atoms under positional restraints (k ) 10 kcal
mol-1 Å-2). This is followed by another 40 ps of constant
pressure simulation under weaker positional restraints (k )
2 kcal mol-1 Å-2). In the final equilibration stage, the
positional restraints are removed and the system is again
simulated at constant pressure for 40 ps. The production MD
simulations (constantT andp) are run to a length of 2 ns.
Five independent 2 ns production runs are carried out for
each protein.

Other important simulation details are as follows. The
leapfrog form of the Verlet algorithm is used to integrate
the equations of motion with a time step of 2 fs. The SHAKE
algorithm64 is used to fix all bonds involving hydrogen atoms
in the protein and to maintain the rigid geometry of the TIP3P
water molecules. Berendsen coupling methods63 are applied
to maintain constant temperature and pressure, both with time
constants of 1 ps. Coulombic interactions are modeled using
particle mesh Ewald electrostatics65 with a real space cutoff
of 8 Å. (LJ interactions are also cutoff at 8 Å, with a long-
range correction added to the energy and pressure.)

II.6. Calculation of RMSD Values. An important gauge
of behavior in this investigation is the RMSD of the loop
atoms, measured with respect to the X-ray reference coor-
dinates (Xref). We report two RMSD measures: the RMSD
of the loop backbone atoms [which is denoted as RMSD-
(BB)] and the RMSD of the loop side-chain atoms [denoted
as RMSD(SC)]. (Corresponding RMSD fluctuations,σ(BB)
andσ(SC), will also be reported.) In all cases, only the heavy
atoms are considered.

The methods used to calculate RMSD in the partial-protein
and full-protein models are somewhat different. Because of
the fixed template, RMSD values for the partial-protein
model can be straightforwardly calculated in a fixed coor-
dinate system. That is, given a coordinate setX i for any
structurei (sampled in the production runs), the (squared)
distances of the loop atoms inX i are simply measured from
their positions inXref. (There is no superposing of structures.)
In the case of the full-protein model, the value taken is the
minimized RMSD resulting from superposingX i and Xref.
Here, these superpositions are based on minimizing the
RMSD of just the loop atoms and not the entire protein
coordinate set. More specifically, for RMSD(BB), only the
backbone atoms are superposed, and for RMSD(SC), only
the side-chain atoms are superposed.

The quantities defined in this section can be applied for
either the backbone or the side-chain atoms (or all of the
loop atoms, etc.). Therefore, we will temporarily drop the
“(BB)” and “(SC)” for compactness in the equations. In the
discussion of the results, however, we will typically refer to
the specific quantities (defined in eqs 2-6) by including this
more detailed (BB) or (SC) notation.

We calculate RMSDi values as averages for the entire run
(trajectory) i. Thus, for a single configurationX t, we have
the “instantaneous” value, RMSDt, which is superscripted
with t for clarity, and the average value is therefore

Figure 2. Two-dimensional diagram of the spherical water
restraining region (the “SPH restraint”). The loop is repre-
sented as the heavy black curve, and the protein template is
the region shown in gray. The dashed circle (radius ) Rtemp),
defining the edge of the template, is the same as that in Figure
1 and is shown here for convenience. Three positions are
marked with the symbol X in the figure. These are, starting
from the bottom, xcm, xcmb, and xsph. xcm is the center of mass
of all of the protein atoms considered explicitly in the model
(the loop and template atoms), while xcmb (also shown in
Figure 1) is the center of mass of the loop backbone. xcm and
xcmb are connected by a dotted line, which defines the vector
direction (pointing from xcm to xcmb) that is used to determine
the position of xsph. (That is, xsph is shifted away from the
template, see eq 1.) Water molecules are contained within a
spherical region defined by the distance Rcap measured from
xsph. This containment region is represented by the large outer
circle. Note that, generally, Rcap > Rtemp, and therefore, the
edge of this circle (sphere in 3D) is shifted to meet the (bottom)
edge of the template so as to keep the majority of the water
molecules on the “loop side” of the model system.

Figure 3. A two-dimensional diagram of the nearest-loop-
atom-based restraining region (the “NLA restraint”). The loop
is represented as the heavy black curve, and the protein
template is the region shown in gray. Water molecules
experience a restoring force only when the distance to the
nearest loop atom becomes greater than a value, Rnla. For
this reason, the boundary of the surrounding containment
region mimics the shape of the loop itself, as shown in the
figure. Note that the loop side-chain atoms are also considered
(as nearest atoms) in the implementation.

RMSDi )
1

n
∑
t)1

n

RMSDt (2)
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wheren is the total number of configurations (snapshots)
collected (evenly in time) over the course of the MD
trajectoryi. For each system, there are five independent runs,
and in the tables, we provide values for the five-run average
that, for simplicity, are denoted just RMSD. The standard
deviation of the RMSDi values (eq 2) for the five runs is
also reported in the tables (in parentheses). These standard
deviations can be helpful because, at times, there can be
considerable variability in the results for individual runs (i).
This, for example, can be due to changes in conformational
microstates, which occur on time scales that are too long to
be exhibited in all runs.

Even if the average RMSDi is small for a given model,
desirable behavior should also be manifested in the correct
fluctuation properties. Therefore, the fluctuations in the
instantaneous RMSDt values (about the average RMSDi) are
also a useful property and are calculated (for runi) as
follows:

σi is (among other things) a reflection of the local motion of
the system. If the system remains in a single conformational
microstate,σi will converge to a well-defined value (as the
loop atoms simply execute local motion confined within that
microstrate). If, on the other hand, the system moves to
another microstate (e.g., a major torsional change in the loop
backbone), there will be a significant jump in the RMSDt

values as they will now tend to oscillate about a new average
value. The fluctuations within the new microstate may not
be that different from the previous one. However,σi

calculated according to eq 3 will be shifted significantly,
because of the large overall spread of RMSDt values when
both microstates are included.

Given the above points, it is helpful to also calculate
fluctuations by window averaging. This is done by first
defining

where

σm(j)i is a value for the short-time-averaged RMSD fluctua-
tions, wherem < n. The average is taken over thejth
window, consisting ofm consecutive snapshots (configura-
tions) recorded during the MD run. (There aren - m + 1
such windows.) All possible (contiguous)m-step windows
are then averaged to give

thus defining the “window-averaged RMSD fluctuations”,
σi

w. In this work, σi
w is calculated using time windows of

200 ps (i.e., them steps cover a period of 200 ps).

We will report both fluctuation definitions.σi
w has the

property of “smoothing over” the fluctuation effects of
moving into (or perhaps flipping between) different mi-
crostates and, thus, more faithfully characterizes local
motions. The gross changes resulting from different mi-
crostates (if they occur) will show up more strongly inσi

w

and will also be reflected in the average RMSD. As for the
reported RMSD values, the fluctuations will be averaged over
five runs, and the standard deviations over the five runs
appear in the tables in parentheses.

III. Results and Discussion
III.1. Solvation Properties of the Partial-Protein Model.
Before discussing RMSD results for the individual loops, it
is important to discuss some of the general aspects of
solvation that we have observed within the partial-protein
model. The number of water molecules can be very small,
and it is thus helpful to note some of the differences in
behavior compared to when larger numbers of water
molecules are used. In the partial-protein model, water
molecules experience two obviously different environmental
influences compared to those in a bulk water environment.
Most importantly is the contact/interaction with protein
surface atoms. Furthermore, there is also the inevitable
exposure to a vacuum due to the modest number of water
molecules employed, coupled with the chosen boundary
conditions (i.e., nonperiodic boundaries).

III.1.1. Analysis of Surface Coverage. One of the
important general characteristics of the present partial-protein
solvation model is that there is typically plenty of “extra
room” for the water molecules within the allotted restraining
region. We mentioned in section II.3 that parameters for both
the SPH and NLA restraint methods have been chosen such
that the restraining volume is somewhat large for the given
Nw. This is further evidenced in our simulations by the fact
that, at any instant, very few water molecules are experienc-
ing a boundary restoring force (and by small values for the
average restraining potential, in general). This is especially
true for smallNw values, where the water molecules will
typically migrate to charged and polar groups on the loop
and nearby template, often leaving nonpolar regions bare (as
described in ref 59). It is reasonable to assume that the
screening/bridging of interactions with charged and polar
groups is one of the most important solvating effects provided
by the water molecules. It is thus expected that it is better
to allow the water molecules to spread out (within reason)
such that they can access the more strongly interacting
protein atoms, rather than attempting to confine them to a
much smaller volume in an effort, for example, to keep them
at a density that is closer to the bulk density for water.

A good way to gain a sense for the behavior of the water
molecules within these models is to identify those molecules
that are considered to belong to the surface region of the
protein, separately from those that reside farther away from
the protein. Specifically, we choose to define a “protein
surface water” as one whose center of mass is a distance of
3.3 Å or less from any protein atom. The total number of
these surface waters found (at any given instant) is denoted
asNsurf. One particularly insightful way to analyze the nature

σi ) [1n ∑
t)1

n

(RMSDt - RMSDi)
2]1/2

(3)

σm(j)i ) [1

m
∑
t)j
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of these models is, thus, to monitor the number of surface
water molecules (Nsurf), or the fraction of protein surface
water (Nsurf/Nw), as the total number of water molecules (Nw)
is varied. In Table 1, we provide some values for〈Nsurf〉 and
〈Nsurf/Nw〉 accumulated from simulations of the loop [64-
71] of RNase A, modeled under the SPH solvent restraint.
(Details of the behavior of the loop itself are deferred until
section III.3.) It is seen that, whenNw is very small, nearly
all of the molecules are directly on the surface of the protein.
For example,〈Nsurf/Nw〉 is nearly 90% whenNw ) 50. It is
not until Nw ) 200 that this ratio reaches 50%, thus
corresponding (on average) to a situation where the protein
surface waters are surrounded by a second outer layer of
water. At Nw ) 300, roughly two-thirds of the water
molecules are outside the inner hydrating layer. It is also
important to note the trends in〈Nsurf〉 itself, where it is seen
that the protein surface appears to saturate with about 100
water molecules atNw ) 200 (i.e.,〈Nsurf〉 remains at about
100 forNw ) 300). This also implies, conversely, that even
for Nw ) 120 (with 〈Nsurf〉 ) 79), significant bare regions
remain on the protein surface.

III.1.2. Diffusion Properties and Residence Times.It
is interesting to address some of the dynamical aspects of
the solvation and to examine, in particular, how these
properties are affected asNw is increased within the partial-
protein model. To do this, we have calculated diffusion
constants for the water molecules using the Einstein relation
〈r2〉 ) 6Dt, whereD is the diffusion constant and〈r2〉 is the
average squared distance that a particle will move in timet.
Because the model is a finite system, the ratio〈r2〉/t will go
to zero at long times. Therefore, we estimateD from 〈r2〉
values after a period of 10 ps (i.e., we takeD ) 〈r2〉/6t at t
) 10 ps). This is a compromise between the effect of ballistic
(nondiffusive) motion at very short times (less than 1 ps)
and the onset of nonlinearity in〈r2〉 versus t, which is
observed as〈r2〉 begins to approach the size of the system
(at t > ∼30 ps).

In Table 1, we show diffusion constants for the partial-
protein model as the number of water molecules is increased.
Dall is the value ofD that is calculated using allNw molecules.
Dsurf, on the other hand, is the diffusion constant calculated
for just the protein surface waters. (Specifically, a molecule
is included in the calculation ofDsurf if it is a distance of 3.3
Å or less from any protein atom at thebeginningof the 10
ps interval.) It is seen that the value ofDall systematically
decreases asNw decreases. Part of the reason for this is the
high fraction of surface waters exhibited in the models with
small Nw values (e.g.,Nw ) 50 or 70). An important
observation from other simulation studies of protein
hydration66-72 is that water molecules on the surface of the
protein diffuse significantly more slowly than water mol-
ecules in the bulk. These studies have shown thatD for
protein surface water is lower (than the bulk value) by about
a factor of 2 or more (see, for example, refs 66 and 67). In
our calculations, the value ofDall at Nw ) 300 (4.96× 10-5

cm2/s) is approaching values that are typical of bulk TIP3P
water. (Commonly calculated values atT ) 300 K andp )
1 atm are about 5× 10-5 cm2/s but can vary depending on
modeling details.73) In contrast, the value forDsurf (2.61×

10-5 cm2/s) is much lower (by about a factor of 2), and thus,
it is in good agreement with the findings of the previous
studies. The value ofDsurf for Nw ) 200 (2.53× 10-5 cm2/
s) is nearly the same as the value at 300, suggesting that the
protein surface waters behave quite similarly in both models.
This is despite the differences inDall, which are thus mostly
attributable to the difference in the relative amount of surface
molecules (〈Nsurf/Nw〉).

Though there is good agreement for the cases ofNw )
200 and 300, it is important to note, however, thatDsurf

becomes significantly lower asNw is decreased further.
Though there is still similarity inDsurf for the case ofNw )
120,Dsurf at 50 and 70 molecules, however, is roughly half
the value of that at 200 or 300. The important distinction in
these models (Nw ) 50 and 70) is that the water molecules
generally lack neighboring water from a second layer (the
〈Nsurf/Nw〉 values are 0.888 and 0.825). In view of the general
observation of a loweredD for water in the first solvation
shell of a protein, it is thus noted that the lack of a second
solvation shell serves to lowerD further. It is interesting to
note, on the other hand, that despite the significantly lower
D values for the case ofNw ) 50 and 70, the stability of the
loops (discussed in the next sections) can often be surpris-
ingly good at these very low hydration levels.

Inherent in the diffusion properties is information on the
time scales of solvation. Specifically, these values can
provide insight on residence times (τ) for water molecules
near the surface of the protein. In earlier experimental (NMR)
work,74 an upper bound for residence times of protein surface
water was placed at around 500 ps. In much better agreement
with the simulation literature, more recent experimental
work75 has placed typical residence times roughly around
25 ps. Residence times have been investigated in simulation
studies on a variety of solvated proteins such as BPTI,68

myoglobin,69 lysozyme,70,71and azurin.72 Here, we will only
briefly make some comparisons. In Brunne et al.,68 detailed
studies were carried out to determine the residence time of
hydrating water molecules in specific regions on the protein
surface (i.e., near specific types of atoms/groups). They found
that the residence time of a surface water molecule is (on
average) about 30 ps. (Specific results would vary depending
on the nearby protein atomssbackbone atoms, side-chain
atoms, charged, polar, nonpolar, etc.)

As a very rough comparison, we can estimate residence
times (the time for a water molecule to leave the neighbor-
hood of a solute protein atom) simply from the diffusion
results. We take the residence time as the time for a water
molecule to diffuse about one and a half molecular diameters,
specifically, 4.5 Å (thus,τ ) (4.5 Å)2/6D). These residence
times are given in Table 1, whereτsurf is the residence time
calculated for a protein surface water andτall is calculated
for all Nw water molecules. For the case ofNw ) 200 or
300, the residence time for surface molecules is about 13
ps, which is in reasonable agreement with the 30 ps given
by Brunne et al.,68 especially when one accounts for the
different modeling conditions. The modeling temperature in
Brunne et al. was lower (277 K) to mimic NMR experimental
conditions. Furthermore, these authors employed the SPC/E
water model,76 which is known to give a lower (more
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accurate) value for the bulk diffusion coefficient compared
to TIP3P. Indeed, calculations in ref 71 using both the SPC/E
and TIP3P models showed that the TIP3P residence times
were a factor of 2 shorter (roughly 14 ps [TIP3P] as opposed
to 27 ps [SPC/E]). (It should also be noted that the diffusion
constants and residence times will also vary depending on
the distances chosen to define a “protein surface water”.)

In correspondence with their loweredDsurf values, the
residence times for smallNw values (50 and 70) are longer.
Though these values forτsurf are closer to the values in some
of the other studies, they should be interpreted as being
“long” for the TIP3P water model (and therefore, they show
a specific behavioral property of the partial-protein model
at low hydration levels). It is thus expected that they would
become much longer if a different water model was used,
such as SPC/E or TIP4P,47 both of which give more accurate
diffusion properties.

One of the points discussed by Brunne et al.68 was their,
perhaps unintuitive, observation that the residence times near
charged atoms were lower than those for polar, and even
nonpolar, atoms. Though we did not carry out the detailed
analysis as in that investigation, we did measure the diffusion
time away from one specific charged group, the NH3 group
on the Lys side chain of the RNase loop, and forNw ) 200
and 300, we also find a decreased residence time (about 10
ps). Interestingly, this effect reverses itself for the case of
Nw ) 50. The value in this case is about 37 ps, which is
longer than the average residence time for surface waters at
this hydration level (Nw). The authors remarked that the
shorter residence times for water molecules near charged
groups must be related to the effects caused within the
surrounding water. Obviously, the lack of outer layers in the
case of smallNw values might suggest the possibility for
different behavior. Here, at low hydration levels, arguments
can more plainly be interpreted in terms of energetic benefits
because more subtle entropic considerations (associated with
surrounding water molecules) are less prevalent.

III.2. Some Properties of the Loops Studied.We now
focus on the behavior of the protein loops. The four primary
surface loops studied (ranging in size from 8 to 10 amino
acid residues), and the related proteins, are presented in Table
2. The 3D structures of these proteins, taken from the PDB,
have been determined with 1.5-1.8 Å resolution. The B
factors of the loops of RNase A and the two loops 1 and 2
of proteinase are relatively small, where the maximal values
obtained for the side chains are 35, 19, and 25, respectively;
for ser-proteinase, the B factors of the backbone atoms of
five residues range within 20-28, that is, still relatively low,
while for some of the side-chain atoms, no significant
electron density has been observed. It should be pointed out
that side chains with a well-defined structure in the crystal
environment (i.e., small B factors) might still be flexible in
solution, the environment that is expected to better be
described by our models.

While our tests require loops with well-defined structures,
it is also imperative to verify that these loops are not
stretched, as a stretched loop is insensitive to the model
applied. Therefore, we present in Table 2 the ratioR) length
of the stretched loop/distance between its ends, which is

calculated between the CR atoms of the first and last residues
of the loop. The length (in Å) of the extended structure is
obtained using the expressions 6.046(nres/2 - 1) + 3.46 and
6.046(nres - 1)/2 for an even and odd number of residues,
nres, respectively; the factors 6.046 and 3.46 Å are taken from
Flory’s book77 (Chapter VII, p 251). To a large extent,R
reflects the conformational freedom of the loop’s backbone
and, to a lesser extent, also that of the side chains; the larger
R is, the greater the flexibility; indeed, theR values of the
four loops are relatively large, ranging from 3.2 to 4.9.
Notice, however, that the conformational freedom depends
also on the structure of the surrounding protein template and
the template-loop interactions. Typically, surface loops are
hydrophilic and often charged; therefore, our chosen loops
are predominantly polar, where those of RNase A and ser-
proteinase each contain one charged residue (bold-faced in
Table 2) and loops 1 and 2 of proteinase have three and two
charged residues, respectively.

III.3. The Loop of RNase A. We discuss, first, the partial-
protein model results for the loop [64-71] of RNase A.
Figure 4 is a “convergence plot” of (the backbone average)
RMSD(BB) as the number of water molecules,Nw, is
increased from 0 (vacuum) to 50. (All points are for the case
of the SPH solvent restraint method andRtemp) 15 Å.) Also
marked in the figure is RMSD(BB) forNw ) 300 (the largest
Nw studied for the partial-protein model), as well as the result
for GBSA. Though RMSD(BB)) 2.30 Å for the vacuum
simulations is large (which is not unexpected), the figure
suggests that only a handful of water molecules is necessary
to stabilize it. RMSD(BB) is quite low for as little asNw )
20 (0.51 Å), and it is, furthermore, in excellent agreement
(converged) with all larger values ofNw.

More extensive results, covering a wider range of modeling
conditions, are presented in Table 3. Here, RMSD(BB)
ranges between 0.51 and 0.67 Å for allNw values between
20 and 300, further suggesting that the backbone behavior
is reasonably reproducible and, thus, insensitive to increased
levels of hydration. These (backbone) results appear, as well,
to be relatively insensitive to the number of environmental
protein atoms incorporated into the model (i.e., the template
sizeRtemp) and the water containment method (SPH or NLA)

Figure 4. Plot of the average backbone RMSD [RMSD(BB)]
as a function of the number of water molecules, Nw, for the
loop [64-71] of RNase A. The dashed lines indicate the
RMSD(BB) values obtained for 300 water molecules, the
GBSA implicit solvation model, and simulation in vacuum.
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and its associated restraining distances (Rcap or Rnla) (within
the ranges tested). We note briefly that (forNw g 20) the
ranges of the average backbone fluctuations (over five runs),
σ(BB), are small, 0.14-0.24 Å (0.19 Å forNw ) 300); the
range of the correspondingσw(BB) is small as well, 0.13-
0.15 Å (0.14 Å forNw ) 300). The above discussion suggests
that, as far as the backbone is concerned, already,Nw ) 50
(or less) is adequate.

It should be pointed out, however, that the standard
deviations, for some of the runs in Table 3, are relatively
high. This is due to individual runs that sample (“escape to”)
different conformational microstates. These transitions are
manifested by a significant change in one or more of the
(backbone) torsion angles (typically 90° or more). The large
free-energy barriers associated with these transitions make
the time scale (∼1 ns or more) too long to straightforwardly
sample/average over various possible conformations (mi-
crostates) within typical MD simulation runs. This is a
common (and unavoidable) difficulty in testing and assessing
potentially flexible regions in protein models. (For example,
these “escapes” were also exhibited in the fully solvated,
full-protein model.)

We take, as an example of this behavior, the set of
trajectories forNw ) 300. Here, four runs fell within the
range 0.53e RMSDi(BB) e 0.55 Å. However, for one run,
the (cumulative average) RMSDi(BB) (eq 2) grows system-
atically as a function of time fort > 3 ns, becoming 0.66 Å
for 5 ns, and would have increased further if the simulation
had been continued (tending toward about 1 Å), meaning
that the loop had transferred to a different microstate. Similar
deviant runs were observed forNw ) 120, in sets 5, 7, and
8, and in sets 12 (Nw ) 70) and 16 (Nw ) 30) (numbering
rows [sets] from the top of Table 3). It should be noted,
however, that, forNw g 50, 73 runs (out of 80 total, i.e.,
91%) lead to very low RMSDi(BB) values within 0.48-
0.60 Å, with the seven most deviant runs still only averaging
to about 0.85 Å. The number of “escaped” runs does not
seem to depend onNw, as one escaped run is found forNw

) 50, one forNw ) 70, four forNw ) 120, and one forNw

) 300.

Moving to the side-chain properties, we note, in general,
that the side-chain RMSD(SC) values are relatively small.
The values range from 1 to 1.4 Å (with 1.31 Å forNw )
300), and thus, the difference between most runs is also
relatively small (about 0.2 Å). These RMSD(SC) values are
lower, for example, than the values obtained for other loops
but larger, of course, compared to the backbone values. The
side chains seem to show a dependence on the template size
and slightly onNw. ForRtemp ) 15 Å, RMSD(SC) decreases
slightly from 1.31 Å (with a very small standard deviation)
for Nw ) 300 to 1.13 Å forNw ) 200, to 1.02 and 1.09 Å
for Nw ) 120, and to 1.02 and 1.00 Å forNw ) 70. On the
other hand, forRtemp ) 14 and 16 Å, the RMSD(SC) values
are larger. In general, the corresponding average side-chain
fluctuations, σ(SC) andσw(SC), tend to decrease asNw

decreases. (See also the discussion for proteinase, loop 1.)
Also, on average,σ(SC) andσw(SC) for Nw ) 50 and 70
appear to give somewhat better agreement with largerNw

values when the NLA solvent restraint is used.

The GBSA results, RMSD(BB)) 1.93 Å and RMSD-
(SC)) 2.71 Å, are significantly larger than those based on
explicit water and are not much better than the vacuum
results (see also Figure 4). It should be pointed out that, in
two of the GBSA runs, RMSDi(BB) and RMSDi(SC) are
still increasing significantly after 5 ns.

III.4. The Loop of Ser-proteinase. The results for the
loop [143-151] of ser-proteinase are provided in Table 4.
The RMSD(BB) values forNw ) 300, 200, and 120 are very
similar, ranging from 0.64 to 0.69 Å with very small standard
deviations (e 0.03 Å) for each set of five runs. The
corresponding RMSD(SC) values are only slightly more
dispersed and can still be considered as very close, ranging
from 1.39 to 1.54 Å with a maximal standard deviation (over
the five runs) of 0.11 Å. The average backbone fluctuations,
σ(BB), are again very close, ranging from 0.12 to 0.14 Å,
and the same applies to the average side-chain fluctuations,
σ(SC), that vary between 0.26 and 0.29 Å; the corresponding
ranges forσw(BB) andσw(SC) are again narrow, 0.11-0.13
and 0.19-0.20 Å. These results, which were calculated for
different templates (Rtemp) 12-15 Å), and with both solvent
restraint methods (SPH and NLA), suggest that, already,Nw

) 120 is sufficient to produce the results of full solvation.
Achieving adequate solvation for this loop becomes more

problematic forNw < 120, and it can, furthermore, depend
on the modeling conditions. This is clearly shown in Figure
5, a convergence plot of RMSD(BB) as a function ofNw

(all for the case ofRtemp ) 13 Å). While the points show
convergence forNw ) 120-300 (as discussed above), the
results forNw ) 50 and 70 using the SPH solvent cap clearly
begin to diverge. Interestingly, the NLA restraint appears to
maintain adequate solvation to lowerNw values. The contrast
of the two solvent restraint methods atNw ) 50 is fairly
significant. For the SPH restraint (Rcap ) 17 Å), the results
RMSD(BB) ) 1.28 Å and RMSD(SC)) 1.88 Å (Table 4)
are significantly larger than the 0.69 and 1.51 Å obtained,
respectively, forNw ) 300. While, on the other hand, the
NLA restraint atNw ) 50 (Rnla ) 7 Å) is much closer, with
RMSD(BB) ) 0.75 and RMSD(SC)) 1.55 Å; onlyσ(BB)
) 0.21 andσ(SC) ) 0.32 Å (for NLA) are larger than the

Figure 5. Plot of the average backbone RMSD [RMSD(BB)]
as a function of the number of water molecules, Nw, for the
loop [143-151] of ser-proteinase. The diamonds mark values
obtained using the spherical water restraining method (marked
“SPH restraint” in the figure). The circles are for values
obtained using the nearest-loop-atom-based restraint (marked
“NLA restraint”).
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0.14 and 0.26 Å respectively obtained forNw ) 300. (The
window-averaged fluctuations are fairly close, however, with
σw(BB) ) 0.15 andσw(SC)) 0.19 for (NLA) Nw ) 50, and
0.13 and 0.20 Å, respectively, forNw ) 300.)

It should be pointed out that the GBSA results for RMSD-
(BB) and RMSD(SC) are actually equal to the corresponding
Nw ) 300 values, while the resultsσ(BB) ) 0.18,σ(SC))
0.31,σw(BB) ) 0.16, andσw(SC)) 0.24 Å are slightly larger
than their counterparts forNw ) 300.

III.5. Loop 1 of Proteinase. The results for loop 1 of
proteinase [128-137] are summarized in Table 5. The table
reveals that the backbone of this loop is very stable, where
RMSD(BB) ∼ 0.70 Å (with the standard deviation smaller
than 0.05) already forNw g 20. For Nw ) 10, 5, and 0,
RMSD(BB) increases to 0.89, 0.84, and 1.08 Å with
relatively large standard deviations (of the five runs), 0.11,
0.17, and 0.13 Å, with maximal values of 1.01, 1.13, and
1.16 Å, respectively, where the first two maximal values have
not been converged after 5 ns and are growing. The results
for σ(BB) are small and similar for mostNw values: 0.12 Å
for Nw g 120, 0.10 Å (on average) forNw ) 70 and 50, and
0.09-0.11 Å for 10e Nw e 40. Similar behavior is observed
for σw(BB).

The RMSD(SC) values for this loop are significantly larger
than those for the loop of ser-proteinase; that is, the side
chains have moved significantly from their X-ray structure.
For Nw g 120, RMSD(SC) ranges from 2.16 to 2.31 Å; for
Nw ) 70, the range is similar except in one case where
RMSD(SC) ) 2.41 Å is slightly larger. AsNw decreases
further, RMSD(SC) increases moderately, becoming 2.65 Å
for Nw ) 0.

Though RMSD(SC) appears to be relatively converged at
smallNw values, the side-chain fluctuations show a signifi-
cant increase asNw is increased. These trends are shown in
Figure 6, which is a plot of the window-averaged side-chain
fluctuations,σw(SC), as a function ofNw (all for the case of
the SPH solvent restraint method andRtemp ) 13 Å). σw-
(SC) is consistently small for allNw e 70 compared to the
higher solvation levels atNw ) 200 or 300. [Note, in contrast,
thatσw(BB), which is also given in the figure, appears to be
converged for allNw values shown.] To more clearly see

how these results are manifested in the trajectories, we have
plotted, as an example, the instantaneous (snapshot) values
of RMSDt(SC) over the course of a typical 5 ns run forNw

) 70 and compare that with a typical run forNw ) 200.
These plots are shown in Figure 7.{Note that they-axis
scales [for RMSDt(SC)] are the same in both plots.} Though
the RMSDt(SC) values for these two runs are similar, on
average, the oscillations in these values (even over short
times) show very different amplitudes. That is, theNw )
200 run appears to visit a more diverse array of states, and
even within those states, the atomic fluctuations are more
broad, meaning higher entropy than in theNw ) 70 case.

Some additional trends in the side-chain fluctuations are
as follows. The table shows that theσ(SC) results forNw g
70 decrease as the template radiusRtemp is increased andNw

is decreased. Also, the NLA restraint leads to higher (i.e.,
better agreement with largeNw) σ(SC) andσw(SC) values
than the spherical cap (SPH). Thus summarizing, forRtemp

) 13 Å, we obtained almost the sameσ(SC) values, 0.37,
0.40, and 0.30 Å, forNw ) 300, 200, and 120, respectively,
and a slightly lower value, 0.20 Å, forNw ) 70 with a the
NLA restraint. The correspondingσw(SC) values, 0.17, 0.21,
0.14, and 0.11 Å, are also close. The results forσ(SC) and
σw(SC) for Nw e 50 are significantly smaller than the
corresponding values forNw ) 300. Therefore,Nw ) 120
(perhaps less with the NLA restraint) is necessary to solvate
this loop.

It is noted that the GBSA values, RMSDi(BB) ) 0.90 Å
and RMSDj(SC) ) 3.07 Å (from two different runs), are
not converged after 5 ns, but they are in an increasing trend.
Thus, the GBSA result, RMSD(BB)) 0.79 Å, is not
converged, and the corresponding GBSA result, RMSD(SC)
) 2.88 Å, that is already significantly larger (by 0.7 Å) than
the 2.19 Å obtained forNw ) 300 is not converged either.

Figure 6. Plot of the window-averaged RMSD fluctuations
for backbone and side-chain atoms [σw(BB) and σw(SC),
respectively] as a function of the number of water molecules,
Nw, for loop 1 of proteinase [128-137]. The values obtained
for the side-chain RMSD fluctuations appear as solid circles
and include error bars (the standard deviation of five trials).
The backbone RMSD fluctuations appear as large open circles
with a lighter trend line.

Figure 7. Instantaneous RMSD values of the side-chain
atoms [RMSDt(SC)] as a function of time for loop 1 of
proteinase [128-137]. The upper plot is for a typical 5 ns
trajectory for the case of Nw ) 70. The lower plot is a typical
trajectory with Nw ) 200.

Minimalist Explicit Solvation Models J. Chem. Theory Comput.M



III.6. Loop 2 of Proteinase. The results for loop 2 of
proteinase [188-196] are summarized in Table 6. The
RMSD(BB) results in the table are similar for all of theNw

values. However, it should be pointed out that, forNw )
300, one MD run escaped from the X-ray microstate, leading
to RMSDi(BB) ) 1.42 Å, where from 3 to 5 ns RMSDi-
(BB) is still increasing. Similar behavior is observed for
single runs of the sets ofNw ) 70 (Rtemp ) 11 Å andRcap )
17 Å), where RMSDi(BB) ) 0.62 Å; Nw ) 70 (Rtemp ) 13
Å andRcap ) 17 Å), where RMSDi(BB) ) 1.40 Å; andNw

) 50 (Rtemp ) 13 Å andRnla ) 7 Å), where RMSDi(BB) )
0.73 Å. This suggests that the X-ray microstate of this loop
may not be overwhelmingly stable (i.e., competing confor-
mational microstates), as this instability is independent of
the number of waters,Nw, occurring forNw ) 50 and 70 as
well as forNw ) 300. Moreover, this behavior was exhibited
in the full-protein model as well (see below). When the
contribution of the “escaped” runs is omitted, all of the
RMSD(BB) results are very close to 0.5 Å, and the
fluctuationsσ(BB) and σw(BB) are close to 0.12 and 0.15
Å, respectively.

The instability of the X-ray microstate is demonstrated
even more strongly by the behavior of the side chains. While,
for Nw g 120, the RMSD(SC) values are relatively close,
ranging from 1.42 to 1.69 Å, the corresponding standard
deviations are large, suggesting that the individual values,
RMSDi(SC), are very different. Indeed, for the two sets of
Nw ) 120 (Rtemp) 15), the minimum and maximum RMSDi-
(SC) values are 1.39 and 2.22 and 1.27 and 2.23 Å.
Moreover, in some cases, the RMSDi(SC) values have not
been converged after 5 ns. For example, forNw ) 300, one
MC run has led to a still unconverged value of RMSDi(SC)
) 2.37 Å, where for bothNw ) 200 and 120 (Rtemp ) 15 Å
and Rcap ) 18 Å) two unconverged RMSDi(SC) values
occurred. A similar picture is observed forNw ) 70 and 50.

Even though this loop is not stable, it is evident that similar
results are obtained forNw g 120 and, forRnla, also forNw

) 70. This is also demonstrated by the results forσ(BB)
andσw(BB) that are close for these runs, that is, within the
ranges 0.18-0.12 and 0.12-0.09 Å, respectively. The ranges
of the side-chain fluctuations,σ(SC) andσw(SC), are also
small, 0.43-0.25 and 0.23-0.17 Å, respectively.

It is of interest to point out that the GBSA results are
significantly different from those obtained with explicit water.
Thus, not only is RMSD(BB)) 1.16 Å considerably larger
than the RMSD(BB) values obtained for explicit water but
the standard deviation of the GBSA set is large because of
elevated RMSDi(BB) values within the range 0.67-1.71 Å;
the same occurs also for the side chains, where RMSD(SC)
) 2.86 Å is significantly larger than the corresponding values
obtained for the explicit water, where the RMSDi(SC) values
for GBSA range within 2.31-3.63 Å.

III.7. Partial Study of Four More Loops. While the
above study suggests that a relatively small number of waters
is sufficient to solvate a loop, one would like to strengthen
this conclusion by evidence from a larger number of loops.
However, because of the extensive calculations required, we
decided to carry out only partial studies of four extra loops,
which indeed provide supportive evidence. We first treated

the seven-residue loop [244-250] (ITTIYQA) of peptidase
(5cpa) with a flexibility ratio,R ) 2.7. DefiningRtemp ) 13
Å and using the spherical water restraint (SPH) withNw )
70 waters, we obtained the relatively small RMSD(BB))
0.69 Å, as the average of five MD runs. The second loop is
of seven residues [57-63] (EAKEH C) of RNase H (2rn2),
with a flexibility ratio R ) 1.6, where againRtemp ) 13 Å
andNw ) 70. Here, the SPH restraint led to RMSD(BB))
1.02 Å, as two deviating MD runs contributed RMSDi(BB)
values of 1.57 and 1.34 Å. However, the NLA restraint,
which has been found to perform better for smallNw values,
led to RMSD(BB)) 0.72 Å. Therefore, this loop is expected
to stabilize with the SPH restraint atNw ) 120, similar to
the case observed for ser-proteinase.

We also studied a seven-residue loop in porcine amylase
(1pif) [304-310] (GHGAGGS) with a flexibility ratioR )
3.2 and the same loop in human amylase (1smd), where S
is replaced by A and the flexibility ratio isR ) 2.3. In the
pig amylase, we used a template ofRtemp ) 15 Å with an
SPH restraint. ForNw ) 70, only two runs were generated,
which led to RMSD(BB)) 0.47 Å, whereas forNw ) 200,
the five MD runs led to RMSD(BB)) 0.45 Å. For the
human amylase, we obtained RMSD(BB)) 0.73 Å using
Rtemp ) 15 Å and the NLA restraint withNw ) 70 waters.

III.8. Results for the Full-Protein Model. The RMSD
results for the full-protein model appear in Table 7 together
with the correspondingNw ) 300 results obtained for the
partial-protein model. However, because the RMSD was
calculated differently for the two models, and to make the
comparison between them on the same footing, we have
recalculated the RMSD of the partial-protein model in the
same way as that for the full-protein model (marked as “yes”
in the “superpose” column of the table). The table reveals
that, for all loops, the RMSD values (and fluctuations) of
the full-protein model are always larger than the correspond-
ing results of the partial-protein model. This effect is to be
expected, on one hand, because of the nonfixed coordinates
(of the nonloop atoms), thus promoting greater flexibility.
On the other hand, however, there should be a mild but
consistent effect to reduce the RMSDs because of the use
of (minimized) superposition. This latter effect appears to
reduce the backbone RMSD values by roughly 0.15 Å upon
comparison of the superposed and nonsuperposed values for
the partial-protein model in Table 7.

Not only are all the averages of the full-protein model
larger than those of the partial model, but also the corre-
sponding standard deviations (appearing in parentheses),
which should be considered in the comparisons between the
averages, are as well. Thus, for ser-proteinase, the values
RMSD(BB) ) 0.57(13) and 0.44(1) Å are equal within the
standard deviations and all runs, on average, span the same
microstate, where the most deviant single run for the full-
protein model, RMSDi(BB) ) 0.80 Å, leads to the corre-
sponding large standard deviation; this run also contributes
to the large fluctuation [σi(BB) ) 0.28 Å] and its large
standard deviation (0.07 Å). A similar picture is seen for
the side chains where RMSD(SC)) 1.33(22) and 1.12(3)
Å are equal within the standard deviation, where one run
contributes most significantly, RMSDi(SC) ) 1.70,σi(SC)
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) 0.49 Å, andσi
w(SC)) 0.20 Å. Notice that the differences

between theσw(BB) andσw(SC) values of the two models
are small. In summary, for this loop, ignoring the effect of
the run with largest results, both models lead to close results,
RMSD(BB) ) 0.52 and 0.44 Å, RMSD(SC)) 1.23 and
1.12,σ(BB) ) 0.12 and 0.10, andσ(SC) ) 0.25 and 0.22
Å.

Quite similar behavior is observed for RNase A, where
only the results of RMSD(SC) of the two models differ
significantly and are not covered by their standard deviations.
Here again, the results for one trajectoryi deviate signifi-
cantly from the results of the other runs of the full-protein
model, leading to RMSDi(BB) ) 0.83, RMSDi(SC)) 2.27,
σi(BB) ) 0.32, andσi(SC)) 0.82 Å. Ignoring this run, the
results for the two models are quite comparable, RMSD-
(BB) ) 0.55 and 0.42 Å, RMSD(SC)) 1.47 and 1.03,σ-
(BB) ) 0.15 and 0.15,σ(SC) ) 0.38 and 0.37,σw(BB) )
0.11 and 0.11, andσw(SC) ) 0.22 and 0.19 Å.

The results for loop 2 of proteinase for both models have
relatively large standard deviations, reflecting differences
among the results of the five runs. Thus, while the averages
of the full-protein model are in most cases larger than those
of the partial model, the differences are not large [e.g., 0.7
vs 0.5 Å for RMSD(BB) and 1.6 vs 1.3 Å for RMSD(SC)],
where the average values are always covered by the error
bars.

For loop 1 of proteinase, the results of the two models
show the most disagreement among the four loops, where
the error bars in most cases do not cover the average values.
However, even in this case, the results are not very different,
1.0 vs 0.6 Å for RMSD(BB) and 2.5 vs 2 Å for RMSD-
(SC).

IV. Conclusions
We have shown that, for the present loops described in the
framework of the partial-protein model, the results, in
general, become less dependent on the parameters of the
model as the number of waters is increased. Relatively small
numbers of water molecules (120 and sometimes less) lead
to results for RMSD and its fluctuations that are very similar
to those obtained for 300 waters. It is expected that (similarly)
∼12 waters per residue will be found adequate for other
loops; however, this number should be checked for each
individual loop. (We have already noted in the Introduction
that Steinbach and Brooks have studied the effect of
increasing the number of water molecules on the protein
structure; examples of similar convergence studies performed
on ions, water, and small molecules appear in refs 78 and
79). We have also found that, for a small number,Nw, of
waters, the NLA restraint leads to slightly better results than
the SPH restraint. The good performance obtained here with
a relatively small number of waters is in accord with the
free-energy calculations of Beglov and Roux,60 who (orig-
inally) applied the NLA restraint to the alanine dipeptide
and tripeptide molecules and have found good agreement
with calculations based on bulk solvation. As expected, the
RMSD (and fluctuation) values for the full-protein model
are somewhat larger than their counterparts for the partial
model. Indeed, the differences are not large, and it is not

clear whether they stem from using more complete solvation
(with particle mesh Ewald) or from modeling the entire
protein with unfixed coordinates.

Still, the present partial-protein model can be made more
realistic (1) by allowing residues neighboring the loop ends
also to move, (2) by relaxing the fixed template atoms, by
only restraining them harmonically to their X-ray positions,
and (3) by increasing the template size; such changes would
make the protein atom treatment in the present model more
similar to the stochastic boundary MD approximation.52

However, while, in principle, the partial-protein model with
implicit solvation (such as GBSA) is inferior to that with
explicit solvation, the long-range electrostatic interactions
of the latter model are still not treated correctly. A more
rigorous treatment is provided by sophisticated hybrid models
where the region of interest is described by explicit solvent
and the effect of the remote region by the reaction field of
continuum solvation.78-85 However, because of the complex
and varying geometry of theactual outer surface of the
protein-water system (e.g., this surface/boundary is not
simply the boundary of the SPH or NLA restraining region),
most of these techniques would be difficult to apply to the
present partial-protein model, especially at smallNw values
(see discussions in refs 84 and 85).

We intend to use the partial-protein model to study mobile
loops that take part in binding processes. As mentioned in
the Introduction, in the free protein, such a loop typically
resides in an open (o) flexible microstate or it undergoes
intermediate flexibility, that is, populates several microstates
in thermodynamic equilibrium. Upon ligand binding, the loop
moves to a structurally different (and less flexible) bound
(b) microstate, sometimes creating a “lid” above the active
site, thus protecting it from water. Several questions are of
interest, for example: (i) Is the process of a selected-fit type?
That is, is the microstate of the bound loop already included
within those visited by the free protein (or otherwise the
process is of an induced-fit type)? (ii) What is the loss in
loop entropy in going from the open to the bound microstates,
and what is the corresponding free-energy difference? (The
backbone entropy can, in some cases, be compared with
results obtained from NMR.) To study these problems, one
would have to carry out MD simulations that cover both the
bound and open microstates; such simulations are expected
to become extremely long and, hence, prohibitive with the
full-protein model.

However, with the partial-protein model (but not as easily
with the full model), one can use replica-exchange or
multicanonical techniques to carry out a conformational
search more efficiently than with long MD simulations at
constant temperature, and differences in free energies can
be obtained from the relative duration of the trajectory in
the microstates of interest. The feasibility of this approach
(for the partial-protein model) is mainly due to the increased
exchange acceptance that is concurrent with smaller system
sizes. Still, the transition of a loop between microstates by
simulations is typically difficult because of high energy
barriers; therefore, procedures for calculating theabsolute
free energy are expected to be very effective, because they
would lead to ∆F ) Fo - Fb and ∆S ) So - Sb by
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subtracting the values obtained from two separate simulations
for the open and bound microstates without the need to
“cover” the latter by a long trajectory. One such method,
called HSMC or HSMD, was developed by us and has been
applied thus far to argon, TIP3P water,86 self-avoiding walks
on a lattice,87 and peptides,88,89and we intend to extend it to
the present partial-protein model as well.
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