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ABSTRACT Astatistical analysis of known
structures is made for an assessment of the
utility of short-range energy considerations.
For each type of amino acid, the potentials
governing (1) the torsions and bond angle
changes of virtual Ca-Ca bonds and (2) the
coupling between torsion and bond angle
changes are derived. These contribute approxi-
mately 22 RT per residue to the stability of
native proteins, approximately half of which is
due to coupling effects. The torsional poten-
tials for the a-helical states of different resi-
dues are verified to be strongly correlated with
the free-energy change measurements made
upon single-site mutations at solvent-exposed
regions. Likewise, a satisfactory correlation is
shown between the b-sheet potentials of differ-
ent amino acids and the scales from free-
energy measurements, despite the role of
tertiary context in stabilizing b-sheets. Further-
more, there is excellent agreement between
our residue-specific potentials for a-helical
state and other thermodynamic based scales.
Threading experiments performed by using an
inverse folding protocol show that 50 of 62 test
structures correctly recognize their native se-
quence on the basis of short-range potentials.
The performance is improved to 55, upon simul-
taneous consideration of short-range poten-
tials and the nonbonded interaction potentials
between sequentially distant residues. Interac-
tions between near residues along the primary
structure, i.e., the local or short-range interac-
tions, are known to be insufficient, alone, for
understanding the tertiary structural prefer-
ences of proteins alone. Yet, knowledge of short-
range conformational potentials permits rational-
izing the secondary structure propensities and
aids in the discrimination between correct and
incorrecttertiaryfolds.Proteins29:292–308,1997.
r 1997 Wiley-Liss, Inc.
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INTRODUCTION

In this study, short-range interactions observed in
globular proteins are explored. Short-range interac-
tions, also termed local interactions, refer to those
taking place between near neighbor amino acids
along the main chain; they determine the conforma-
tional distributions of bond angles and bond tor-
sional states of the backbone. This is a one-dimen-
sional problem, which is suitably analyzed by the
tools of linear Ising or Markov chain models, as well
as the classical rotational isomeric state approxima-
tion of polymer statistics.1 A set of residue-specific
empirical energy parameters is extracted here and
used for interpreting experiments and recognizing
correct sequence-structure pairs.

The present study complements our two recent
analyses2,3 on nonbonded interactions between side
chains (S-S), in a self-consistent way. The former
emphasizes the dominance of hydrophilic interac-
tions at close (r # 4.0 Å) interresidue distances,2

which contrasts the well-established major role of
hydrophobic interactions at broader (r # 7 Å) dis-
tances.4 The second characterizes the residue-
specific coordination geometry of side chains.3 In
both studies, the interactions between side-chain
pairs separated by at least two intervening residues,
or five virtual bonds (three backbone and two side-
chain bonds), are taken into consideration. These are
shortly referred to as long-range interactions. A
sensible analysis of protein structural preferences
should, on the other hand, take into consideration
both the long-range and short-range preferences of
the chain. Honig and Cohen5 recently pointed out,
for example, that side-chain-only models cannot
capture the essential features of a folding pathway,
due to the neglect of the chemical nature of the
polypeptide backbone. The merit of combining inter-
action potentials of various types for the identifica-
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tion of native protein structures has been empha-
sized in several recent studies6,7 and is verified here.

Usually, statistical treatments of protein conforma-
tions considered the interdependence of the back-
bone torsion angles w and c adjacent to the peptide
bond (Ramachandran plots) and neglected higher
order interdependences between bond dihedral
angles. Systematic analyses of (w, c) angles for
different types of amino acids lead to similarity
coefficients between amino acid pairs, which are
useful in estimating the structural effects of amino
acid substitutions and providing an efficient scoring
scheme for sequence alignments.8 On the other
hand, common secondary structure motifs, such as
a-helices and b-sheets, result from the repetition of
well-defined rotations along the main chain. Turns
also constitute units that are distinguishable by
their particular dihedral angle sequences. These
observations suggest that more precise preferences
for particular secondary structures can be accounted
for by appropriate selection from probability distribu-
tions for correlated or interdependent bond rotations.
For example, knowledge-based conditional probabili-
ties PB 0A(fi, ci) for the dihedral angles of residues of
type B, given the identity (A) of the residue i-1, have
proven useful in a genetic algorithm to reproduce the
native folds of a few small proteins, such as melittin,
avian pancreatic inhibitor, and apamin.9 Likewise,
conformational states and energies of tripeptides,
incorporating the triplewise interdependence of adja-
cent amino acids, were successfully used by Nishi-
kawa and Matsuo,10 along with energy terms account-
ing for side-chain packing, hydration, and hydrogen
bonding, in evaluating sequence-structure compat-
ibility and detecting weak homologies.

In the classical (f, c) representation, the interde-
pendence of the dihedral angles for consecutive
residues A and B is expressed by a four-dimensional
probability distribution, PAB(fi-1, ci-1, fi, ci). Confor-
mational potentials cannot be accurately extracted
for this fine level of description, because of insuffi-
cient data, despite the growing number of structures
determined by X-ray or NMR; it is expedient to
resort to lower resolution descriptions of the back-
bone. The virtual bond representations of the protein
backbone have proven to provide physically reliable,
yet mathematically tractable models of protein struc-
tures on a local scale.11–14 Such representations date
back to the original work of Brant and Flory.15

A schematic representation of the virtual bond
model adopted here is given in Figure 1. Conforming
with the original work of Brant and Flory,15 the
model consists of virtual bonds li, of magnitude li,
pointing from Ci-1

a to Ci
a, virtual bond angles ui

between li and li11, and torsional angles or pseudodi-
hedrals fi defining the rotation about bond li. The
interdependence of the pseudodihedrals fi and fi11

was investigated by DeWitte and Shakhnovich13 in
terms of three groups of amino acids: helix formers,

sheet formers, and turn formers, leading to a total of
nine combinations of pairs of pseudodihedrals. Here,
a more detailed approach is taken: residue-specific
distributions and conformational energies are gener-
ated; the analysis is performed both for pairs of
pseudodihedrals (fi, fi11) and for interdependent
pairs of virtual bond angles and pseudodihedrals (ui,
fi11) and (ui, fi), as a function of the type of the ith
residue. 302 Brookhaven Protein Data Bank (PDB)
structures,16,17 also considered in our recent studies
of nonbonded potentials,2,3 are analyzed for extract-
ing knowledge-based data on the conformational
statistics of virtual bonds. Together with the recently
derived long-range potentials,2 a low-resolution model
is constructed, which is tested in threading experi-
ments. No gaps are considered in these tests. The
short-range potentials are shown by use in inverse
folding calculations to be quite specific for recogniz-
ing the native sequence for a given fold, even without
including the long-range potentials. However, the
performance of the threading tests improves by
combining short-range and long-range potentials.

RESULTS
Probability Distributions of Virtual Bond
Angles and Torsions

The backbone configuration is defined by the set of
bond angles and torsion angles (Q, F) ; 5u2, u3, . . . ,
un21, f3, f4, . . . , fn216, Ca atoms being indexed from 1
to n. Backbone virtual bond lengths are 1i 5 3.81 6
0.02 Å when the peptide bond is in the trans confor-
mation. The rare occurrence of cis peptide bonds is
neglected. The rotations f2 and fn of the terminal
virtual bonds do not affect the internal configuration
of the main chain and need not be specified. Thus,
the total number of variables defining the backbone
configuration is 2n-5. This may be compared with

Fig. 1. Schematic representation of the Ca-Ca virtual bond
model. Ca atoms indexed from i 2 2 to i 1 2 are shown together
with the side groups Ri22-Ri12 attached to them. The virtual bond
vector l i points from Ci21

a to Ci
a. ui is the bond angle between li and

li11. fi is the torsion angle defining the rotation about bond li. It is
taken as 180° and 0° (or 360°) in the trans and cis conformations,
respectively.
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3n-6, the number of degrees of freedom in a fully
unconstrained atomic description of the backbone.
Despite the reduction in the number of variables, the
present model can successfully characterize the back-
bone conformation and account for secondary struc-
ture preferences. Furthermore, correlations inher-
ently due to chain connectivity, involving up to 12
(real) bonds along the chain are conveniently treated.

First, singlet probabilities are collected for the
distribution of the bond angles and dihedrals for
each residue type A. End effects are neglected, and
probabilities are evaluated for all internal angles,
irrespective of their location along the backbone. The
singlet probabilities are designated as PA(u) for the
virtual bond angle at any a-carbon belonging to
residue A, PA(f2) for the torsion of a virtual bond
preceding a residue of type A, and PA(f1) for that of
the bond succeeding A. For illustrative purposes, the
distributions obtained for a few residues are shown
in Figures 2 and 3. PA(u) for A 5 Gly, Pro, and Asp are
shown in Figure 2a. We note that these amino acids,
which were recently classified as turn formers and
assigned identical conformational energies,13 are
distinguishable by their bond angle distributions.
The behavior of Ala, Val, and His is displayed in
Figure 2b, again revealing that Ala and His, which
were grouped13 as helix formers, have distinct bond
angle preferences and should be treated separately.
The curve for Val in the same figure is typical of the
virtual bond angle distribution of sheet formers Val,
Ile, Tyr, Trp, Phe, and Thr, except for Cys (not
shown), whose second peak is less pronounced and
broader.

The distributions of pseudodihedrals PA(f1) and
PA(f2) are illustrated in Figure 3. The curves for A 5
Gly, Asp, and Ala are displayed. Figure 3a indicates
that it is inappropriate to classify Asp and Gly in the
same group, even though both residues might favor
formation of turns. Another observation is that the
pseudodihedrals preceding and succeeding a given
residue can exhibit different statistical behavior. In
particular, the peak positions in the PA(f1) and
PA(f2) curves for Gly are quite different. PA(f1) for
Gly is distinguished by its relatively flat distribution
with three peaks. A similar trimodal distribution
with peaks at f1 5 60°, 180°, and 300°, which
correspond to gauche2, trans and gauche1 states,
respectively, was also observed in PA(f1) for Cys (not
shown). PA(f2) curves, on the other hand, exhibit
two peaks at 60° and 210°, approximately, for all A.
These two peaks, separated by approximately p, are
also observed in all PA(f1) curves, apart from Cys
and Gly. The highest peak (60°) is characteristic of
a-helices in the virtual bond model. The second peak
that is broader and weaker is for b-sheets. Likewise,
among the two peaks located at approximately 90°
and 120° in the PA(u) curves (Fig. 2), the former is
strongly correlated with a-helices, and the second
with b-sheets.

At the next level of approximation, correlations
between virtual bond angles and pseudodihedrals
are examined. Different types of pairwise couplings
are observed: f2 and f1 are strongly coupled, and
the type of interdependence is a function of the type
A of the residue located between these two virtual
bonds. Likewise, u is correlated strongly with the
torsions f2 and f1 of the adjoining bonds. The
overall numbers N(f2, f1), N(u, f2), and N(u, f1) of
pairs of angles observed in the presently examined
databank structures3 are shown in Figure 4. These
are essentially unnormalized probability surfaces
and are referred to as doublet distributions. These
data are collected irrespective of the type of residue.
Although maps similar to those of Figure 4 have
been obtained in previous studies,12,13 we include
these to provide a basis for comparing the behavior of
specific residues (see Figs. 5–7). The region of the

Fig. 2. Singlet probability distribution functions PA(u) for the
virtual bond angle at the a-carbons of the particular residues
(a) A 5 Gly, Pro, and Asp, (b) A 5 Ala, Val, and His. The
distributions are normalized, i.e., the areas under the curves are
equal to unity. Results are obtained with 10° intervals. The peaks
near 90° and 120° include a-helices and b-sheets, respectively.
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surface for N(f1, f2) near (f1, f2) < (60°, 60°),
which is distinguished by the highest density, is
characteristic of a-helices, whereas b-sheets are
characterized by dihedral angles around (f1, f2) <
(210°, 210°), the region of next highest density. The
distribution associated with b-sheets is more diffuse
and less sharp than that of a-helices. Likewise, the
pronounced peak at (u, f6) < (90°, 60°) is characteris-
tic of a-helical state, whereas the b-sheet region is
characterized by the joint state (u, f6) < (120°, 210°).

The strong dependence of the conformational dis-
tributions on the identity A of the residue may be
seen from the comparison of the maps obtained for
particular residues (Figs. 5–7) with the average
distributions (Fig. 4). Figure 5 displays NA(f1, f2)
surfaces for A 5 Gly, Pro, Val and Glu. The strong
preference of Glu, for example, for a-helices is distin-

guishable, whereas the versatility of Gly to adopt
various torsional states is apparent. Pro exhibits
unique preferences. The b-sheet region is more fre-
quent for Val compared to other residues. Figures 6
and 7 illustrate the coupling between the virtual
bond angles and torsion angles, for some selected
residues. The surfaces NA(u, f1) in Figure 6 for Gly
and Asn reveal the strikingly different conforma-
tional characteristics of these two residues, despite
their common tendency to favor turns.

Short-Range Interaction Energies

Residue-specific conformational potentials are de-
veloped on the basis of the NA(f1, f2), NA(u, f1), and
NA(u, f2) distributions in their normalized forms
PA(f1, f2), PA(u, f1), and PA(u, f2). We resort to
discrete state formalism, inasmuch as statistically
reliable evaluations of doublet energies is possible
only by considering sufficiently large regions of the
surfaces. Intervals of size Df6 5 30° and Du 5 10° in
the respective ranges 0° # f6 # 360° and 60° # u #
180° are taken.

We define, for a given residue A at position i along
the primary sequence of the protein, a conforma-
tional energy of the form

EA(ui, fi, fi11) 5 EA(ui) 1 EA(fi) 1 EA(fi11)

1 DEA(ui, fi) 1 DEA(ui, fi11) 1 DEA(fi, fi11). (1)

Here EA(ui), EA(fi), and EA(fi11) are the virtual bond
angle and torsion energies corresponding to the
states ui,fi, and fi 1 1 of the virtual bonds about A,
assuming these variables to be independent of each
other, and DEA(ui, fi) DEA(ui, fi11), and DEA(ui, fi11),
are the increments accounting for their pairwise
interdependences. EA(ui), EA(fi), and EA(fi11) are
evaluated from

EA(ui) 5 2RT ln [PA(u)/P°A(u)]

EA(fi) 5 2RT ln [PA(f2)/P°A(f2)]

EA(fi11) 5 2RT ln [PA(f1)/P°A(f1)] (2)

where P°A(u), P°A(f1), and P°A(f2) are the uniform
distribution probabilities, i.e., those valid in the
absence of any correlations. In continuous space,
R°A(u) 5 1/p, and R°A(f) 5 1/2p; in the discrete state
formalism, they are directly proportional to the size
of the angular intervals defining the states. The
terms accounting for the coupling among the three
degrees of freedom are likewise estimated from

DEA(ui, fi) 5 2RT ln [PA(u, f2)/PA(u)PA(f2)]

DEA(ui, fi11) 5 2RT ln [PA(u, f1)/PA(u)PA(f1)]

DEA(fi, fi11) 5 2RT ln [PA(f2, f1)/PA(f2)PA(f1)]

(3)

Fig. 3. Singlet probability distributions, PA(f1) (a) for the
torsion of a virtual bond succeeding a residue of type A, and
PA(f2) (b) for that of a bond preceding A, shown for A 5 Gly, Asp,
and Ala. The curves are normalized. Intervals of 30° are consid-
ered. The peak near 60° is characteristic of a-helices, and the
second around 210°, which is broader and weaker, is associated
with b-sheets.
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The probability distributions used are for all bond
angles and torsions for a given residue type A,
regardless of position along the chain.

The overall short-range conformational energy
E(Q, F) of a given protein in conformation (Q, F) is
expressed as

E(Q, F) 5 2RT ln P(Q, F) (4)

where P(Q, F) is the probability of conformation (Q,
F). In a strict sense, the right-hand side of Eq. (4)
should include an additional term, RT ln Zc, where Zc

is the conformational partition function defined by
the summation of the Boltzmann weights over all (Q,
F). This term is eliminated here by replacing the
weights by the normalized probabilities. Within the
limits of applicability of Markov chain statistics,1

E(Q, F) is rewritten as

E(Q,F) 5 o
i52

n21

Ei(u) 1 o
i53

n21

[Ei(f2)/2 1 Ei21(f1)/2]

1 o
i53

n21

[DEi21(u, f1) 1 DEi(u, f2)] 1 o
i53

n22

DEi(f2, f1).

(5)

Here, the indices refer to the sequential position of
the residues along the chain and thereby depend on
the residue type. Following the conventional termi-
nology of polymer statistics, Ei(f1), Ei(f2), and Ei(u)
will be referred to as first-order interaction energies,
and the remainder, DEi(f2, f1), DEi(u, f1), and DEi(u,

f2), as second-order interaction energies.1 These two
contributions are expressed as

E(1)(Q, F) 5 o
i52

n21

Ei(u) 1 o
i53

n21

[Ei(f2)/2 1 Ei21(f1)/2]

(6)

and

E(2)(Q, F) 5 o
i53

n21

[DEi21(u, f1) 1 DEi(u, f2)]

1 o
i53

n22

DEi(f2, f1), (7)

respectively. The two types of interactions are shown
below to be almost equally important in stabilizing
native folds.

Calculations have been performed independently
for two sets of PDB structures, including each $150
proteins,2,3 which confirmed the reproducibility of
the database extracted conformational energies. The
values of EA(u), EA(f1), EA(f2), EA(u, f1), EA(u, f2),
and EA(f2, f1) for all types A of residues, listed at 10°
intervals of u for 60° # u # 180° and 30° intervals of f
in the range 0° # f1, f2 # 360° are available in the
supplementary material, upon request.

APPLICATIONS AND DISCUSSION
Secondary Structure Propensities:
Comparison With Experiments

a-Helix propensities

In Table I, torsional energies for a-helical states of
pairwise interdependent virtual bonds are pre-

Fig. 4. Number distributions of pairs interdependent angles
(f1, f2), (u, f2) and (u, f1), collected for all residue types in a set
of previously reported3 150 PDB structures. The doublet distribu-
tion N(f2, f1) is determined by considering regions of size (Df2,
Df1) 5 (30°, 30°). The region about (f2, f1) < (60°, 60°) is

characteristic of a-helices, whereas the b-sheet structures corre-
spond to (f2, f1) < (210°, 210°). N(u, f1) and N (u, f2) are found
by using Du bins of size 10°, in the range 60° # u # 180°. Regions
of highest density are shown by the contours projected onto the
lower horizontal plane.
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sented. a-Helices are defined here by the coupled

Fig. 5. Doublet distributions of pseudodihedrals, NA(f1, f2), collected for A 5 Gly, Pro, Val, and
Glu. The curves reflect the strong preference of Glu for a-helices, the inclination of Val for b-sheets,
the versatility of Gly to assume a wide variety of conformational states, and the distinct
characteristics of Pro. See the caption of Figure 4 for further details.
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dihedral angles (f1
a 6 Df1, f2

a 6 Df2) 5 (60° 6 15°,
60° 6 15°), the subscript a referring to the a-helical
state. Following Eqs. 1–3, the integration of the
normalized probability distributions over this par-
ticular region of rotational angle space yields EA(f1

a,
f2

a) for each residue type A. The residue types are
listed in the first column in the order of decreasing
strength of energy EA(f1

a, f2
a) ; EA(f1

a) 1 EA(f2
a) 1

DEA(f1
a, f2

a). In all cases, attractive interactions,
presumably reflecting the effect of favorable back-
bone-backbone hydrogen bonding, are operative, ex-
cept for EPRO(f2

a). Ala exhibits the strongest ten-
dency to participate in a-helices, followed by Met <
Glu . Leu < Gln < Arg . Lys < Trp . Phe < Ile,
whereas in the other extreme case of residues disfa-
voring or breaking a-helices the order Pro . Gly .
Thr . Tyr < Cys < Val < Ser < Asn < His is seen,
similarly to earlier knowledge-based studies.18–21 A
pair of bonds flanking an alanine is subject to a
conformational energy which is lower by almost 2 RT
compared with that of a pair of bonds about Pro. Gly
is the next most helix destabilizing residue, its torsional
energy being higher than that of Ala by 1.4 RT.

The comparison of the energies EA(f1
a) and EA(f2

a)
for different residues gives some indications about
the intrinsic helix-capping preferences of individual
residues. These may be compared with experimental
observations, although the stabilizing effect of differ-

ent amino acids at helix termini can strongly depend
on context.22 The observation that EA(f1

a) is more
favorable than EA(f2

a) for A 5 Pro by approximately
1.3 RT, for example, suggests that proline is likely to
be succeeded by an a-helix, rather than preceded.
This is in accord with more detailed studies of
capping preferences in helices.23 This is due to the
inability of its N to form hydrogen bonds. On the
other hand, a preference for the C-terminus of
a-helices, rather than the N-terminus, is discernible
for A 5 Gly, His, Asn, and Asp. Ile and Val exhibit the
opposite tendency. These results agree to some ex-
tent with those deduced by Serrano et al.22 from a
series of mutations at the N-caps, C-caps, and inter-
nal positions of the solvent-exposed faces of two
a-helices of barnase. The residues exhibiting the
strongest preferences for the C-cap indeed are re-
ported in that study to be Gly . His . Asn. On a
more recent scale, the residues experiencing the
most favorable free energy at the C-cap are again
shown to be Gly, His, and Asn, all three being
approximately equally stable.24 We note that approxi-
mately one third of all a-helices have been pointed
out to terminate with Gly at the carboxyl end.25 The
preferences at the N-cap, on the other hand, are
determined by hydrogen bonding of side chains or
solvent to exposed backbone N-H groups. Asp, Asn,
Thr, and Ser are reported24 to have the strongest

Fig. 6. NA (u, f1) for A 5 Gly and Asn reflecting the specificity of the coupling between the virtual
bond angle u and the pseudodihedral f1.
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preference for the N-cap; these preferences are not
observed in our study.

Our scale of helical propensities bears a close
resemblance to the ranking Ala . Leu . Met .
Gln . Ile . Val . Ser . Thr . Asn . Gly
determined26 from circular dichroism. The relative
order of Leu and Met, Ser and Val, and the rank of
Asn, are different in our case, which matches the
order of propensities reported by Chou and Fas-
man.27,28 Also, we note that the relative helix stabiliz-
ing tendencies of alanine and hydrophobic residues
found here, Ala . Leu . Phe . Ile . Val, are
consistent with those reported by O’Neil and De-
Grado.29 Baldwin and co-workers found for the same
subset of residues, the order Leu < Ala . Phe . Ile .
Val, and invited attention to the fact that the helix-
forming tendency of a particular amino acid might
depend on the sequence context in which it occurs.30

For instance, the substitution of the solvent-exposed
residue Ala32 of barnase by all other naturally
occurring amino acids emphasizes Arg and Lys as
the two residues having the least destabilizing effect
on the original helical structure.31 Likewise, the
helix-stabilizing tendency of Phe is found by Blaber
et al.32 to be quite weak, in contrast to our results
and to the above mentioned experiments.

Figure 8a shows a comparison of our results with
the structure-based thermodynamic scale of a-helix
propensities recently derived by Luque et al.33 DGAa

values shown on the abscissa are their free-energy
changes for helix formation at 25°C for 19 amino
acids (excluding proline). The ordinate displays our
residue-specific doublet energies EA(f1

a, f2
a) at the

same temperature directly taken from the last col-
umn of Table I. A linear regression analysis omitting
the charged residues, which are known to be sensi-
tive to ionic strength,33 yields the remarkably good
line drawn through the data with a correlation
coefficient of 0.93. The corresponding equation is

EA(f1
a, f2

a) 5 1.00 DGAa 1 2.52. (8)

Inclusion of the charged residues decreases the
correlation coefficient to 0.89, and the slope of the
best fitting line becomes 0.90. Thus, there is a
strikingly good agreement between our empirical
results and the thermodynamic analysis of Luque
and collaborators,33 despite the fundamental differ-
ences in methods.

We also have compared our results with the DDGAa

values measured by O’Neil and deGrado.29 DDGAa

values are found from coiled monomer-helical dimer
equilibrium constant measurements taken before
and after mutating a helical residue (A) in a solvent-
exposed site of a synthetic polypeptide. The results
are expressed relative to Gly. Plotting DDGAa values
for all residues except the charged ones, against the

Fig. 7. NA(u, f2) for A 5 Pro and Ser, illustrating the residue-specific coupling between u and f2.
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difference EA(f1
a, f2

a) 2 EGLY(f1
a, f2

a) leads to the
fitted equation

EA(f1
a, f2

a) 2 EGLY(f1
a, f2

a)

5 0.803 DDGAa 1 0.099 (9)

with a correlation coefficient of 0.90.
In Figure 8b, the potentials EA(f1

a, f2
a) at T 5

300 K are compared with the side-chain entropy
changes TDSAa upon helix formation, calculated by
Creamer and Rose34 from rotamer distributions of
amino acid side chains. The ordinate values are
expressed relative to Ala for comparison with the
entropy changes on the abscissa. The best fit line
obeys the equation

EA(f1
a, f2

a) 2 EALA(f1
a, f2

a)

5 20.82 TDSAa 2 0.007 (10)

with a correlation coefficient of x 5 0.92. The entropy
calculations were performed34 with Monte Carlo genera-
tion of short acetylated (Ace) and methyl amidated
(NMe) peptides of the form (AceAla5XAla5NMe), in
which Ala, Val, Ile, Leu, Met, Phe, Tyr, and Trp were
substituted for the central residue X. The agreement
between our potentials and the side group entropy
losses invites attention to the contribution of en-
tropic effects in determining the a-helix propensities
of amino acids.

Finally, a comparison of our doublet potentials
with the free-energy values calculated by Muñoz and
Serrano,24 yields (data not shown) a relationship of
the form

DEA(f1
a, f2

a) 2 EALA(f1
a, f2

a)

5 0.99 DGAa 1 0.058 (11)

with x 5 0.86. Here, DGAa is the intrinsic free energy,
relative to that of alanine, required to put the
particular amino acid A in helical dihedral angles,
excluding the contribution of hydrogen bonding. The

Fig. 8 a: Comparison of the a-helical propensities of amino
acids obtained in the present study with the thermodynamic scale
derived by Luque et al.33 by using a structure-based optimization
scheme. The residue-specific changes in free energy DGAa associ-
ated with a-helix formation are shown on the abscissa. These are
plotted against the energies EA(f1

a, f2
a) presented in the last

column of Table I, evaluated at 25°C. The linear regression line is
obtained with a correlation coefficient x 5 0.93. b. Comparison of
the potentials EA(f1

a, f2
a) with the side-chain entropy changes

TDS associated with helix formation. TDSa values on the abscissa
were calculated by Creamer and Rose34 for A 5 Ala, Val, Ile, Leu,
Met, Phe, Tyr, and Trp. The ordinate values are expressed relative
to that of Ala, i.e., EA-ALA(f1

a, f2
a) ; EA(f1

a, f2
a) 2 EALA(f1

a,
f2

a). The best fit line yields x 5 0.92.

TABLE I. Rotational Potentials for Virtual Bond
Torsions (f1

a, f2
a) Characteristic

of a-Helical Structures*

A EA(f1
a)/RT EA(f2

a)/RT
DEA(f1

a,
f2

a)/RT
EA(f1

a,
f2

a)/RT†

Ala 21.65 21.69 20.52 23.85 6 .05
Met 21.53 21.58 20.57 23.68 6 .04
Glu 21.60 21.60 20.43 23.64 6 .02
Leu 21.47 21.48 20.61 23.55 6 .03
Gln 21.46 21.53 20.55 23.54 6 .05
Arg 21.46 21.49 20.56 23.50 6 .08
Lys 21.38 21.42 20.48 23.38 6 .02
Trp 21.40 21.33 20.64 23.37 6 .06
Phe 21.24 21.32 20.72 23.28 6 .09
Ile 21.29 21.15 20.83 23.26 6 .03
Asp 21.20 21.35 20.66 23.21 6 .05
His 21.10 21.27 20.72 23.09 6 .06
Asn 21.07 21.21 20.74 23.08 6 .10
Ser 21.17 21.16 20.75 23.08 6 .04
Val 21.17 20.98 20.92 23.06 6 .09
Cys 21.01 20.99 21.01 23.01 6 .05
Tyr 21.07 21.09 20.83 23.00 6 .03
Thr 21.01 21.05 20.87 22.91 6 .05
Gly 20.54 20.68 21.23 22.45 6 .06
Pro 21.17 10.11 20.86 21.92 6 .14

*The a-helix region is characterized by (f2
a 6 Df2, f1

a 6 Df1) 5
(60° 6 15°, 60° 6 15°).
†The errors marked in the last column refer to the differences
between the results obtained from two sets3 comprising 150
and 152 PDB structures, respectively.
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free-energy change of proline is pointed out to in-
clude the contribution of a hydrogen bond dissocia-
tion24 and is therefore excluded from the present
analysis. It is interesting to notice that the absolute
values of these two scales are in nearly perfect
agreement, which is indicated by the slope 0.99 of
the best fit line.

Several other examples lend support to the suitabil-
ity of the torsion energies of Table I for interpreting
a-helix propensities: Merutka and Stellwagen35 ex-
amined water-soluble monomeric helices and found
Ser and Met to be less helix stabilizing than Ala by
0.5 and 0.3 kcal/mol, respectively. The last column of
Table I yields the respective values of 0.46 and 0.10
kcal/mol for the energy increases involved in these
particular mutations at room temperature. Substitu-
tion of Ala for Gly46 and Gly48 in lambda repressor
was reported to increase the stability by 0.66 and
0.87 kcal/mol, respectively.36 The corresponding value
given by O’Neil and DeGrado29 is 0.77 kcal/mol.
Table 1 indicates an increase in stability by 0.84
kcal/mol, for Gly = Ala substitution. Mutation of
a-helical Val131 in T4 lysozyme to Ala or Thr results
in a 0.23 kcal/mol stabilization or 0.08 kcal/mol
destabilization, respectively.37 Following Table I, an
increase in stability by 0.47 kcal/mol is expected in
the former mutation, and a decrease of 0.05 kcal/mol,
in the latter. Finally, we note that our value of 0.47
kcal/mol for the energy difference between Ala and
Val in a-helices lies between the values reported by
Blaber et al.32 and the peptide scale of O’Neil and
DeGrado,29 and almost coincides with the value (0.45
kcal/mol) from the scale of Lyu et al.26

b-Sheet propensities

Table II summarizes the calculated energy values
EA(f1

b, f2
b) for different residues in b-sheet struc-

tures. The region of the dihedral angle maps cen-
tered about (f1

b, f2
b) 5 (210°, 210°) is considered in

this case, except for a few cases in which one of the
dihedral angles is shifted to the neighborhood of
180°, as indicated by the asterisk. Gly is excluded
because no energy minimum attributable to b-sheet
structures is observed. The energy values in Table II
are not as strong as those for a-helices. This is
consistent with the fact that a major contribution to
the stability of b-sheets must come in general from
long-range interactions, and these tabulated energy
values reflect the contributions of short-range inter-
actions only. In contrast to a-helices, which are
mainly favored by their singlet energies, we note
that the doublet energy changes DEA(f1

b, f2
b) have

a relatively larger effect on the stability of b-sheets.
Arank order for b-sheet preferences takes the form of Ile
< Val . Cys . Tyr . Phe < Leu . Trp < Thr . Met .
His . Asp < Lys . Gln . Asn . Arg . Glu . Ala.

Kim and Berg38 have measured the thermody-
namic stability of a b-sheet-containing zinc finger
protein when a given solvent-exposed residue posi-
tion is substituted. Also, Bai and Englander39 esti-

mated b-sheet propensities from side-chain blocking
effects controlling the rates of hydrogen exchange
reactions. Except for Phe and Cys, the results from
the two groups show close correspondence. The
comparison of our results with those of Kim and Berg
is displayed in Figure 9a. Here, EA(f1

b, f2
b) values

are plotted against the change in free energies
obtained by Kim and Berg for all types of amino
acids, except Pro and Gly. We note that on the basis
of singlet energies alone, listed in the first two
columns of Table II, Val appears to be the strongest
b-sheet forming residue. The correct correspondence
with experiments, in which Ile is a stronger b-sheet
former than Val, although a small change, is achieved
only by invoking the interdependence of neighboring
residues, i.e., by considering the second-order contri-
bution DEA(f1

b, f2
b). Likewise Thr, which was re-

ported28 to be the third strongest b-sheet former
after Val and Ile, is shifted here to a substantially
lower rank in agreement with experiments, mainly
due to its less favorable doublet energy contribution.
DEA(f1

b, f2
b) is particularly strong (approximately

21.0 RT) for A 5 Gln, Glu, Met, Asp, Ala, and His and
improves significantly the agreement between experi-
ments and the present empirical results. Linear
regression of the data presented in Figure 9a yields

DEA(f1
b, f2

b) 5 3.08 DDGAb 1 0.37 (12)

TABLE II. Rotational Potentials for Virtual Bond
Torsions (f1b, f2b) Characteristic

of b-Sheet Structures*

A EA(f1b)/RT EA(f2b)/RT
DEA(f1b,
f2b)/RT

EA(f1b,
f2b)/RT†

Ile 20.85 20.83 20.70 22.37 6 0.04
Val 20.83 20.92 20.59 22.33 6 0.01
Cys 20.82 20.67 20.47 21.96 6 0.14
Tyr 20.75 20.63* 20.55 21.94 6 0.09
Phe 20.67 20.53 20.71 21.90 6 0.02
Leu 20.54 20.59 20.77 21.90 6 0.03
Trp 20.68* 20.38 20.79 21.85 6 0.02
Thr 20.67 20.64 20.52 21.83 6 0.03
Met 20.41 20.39* 20.97 21.77 6 0.07
His 20.49* 20.30 20.82 21.60 6 0.10
Asp 20.33* 20.33 20.92 21.57 6 0.13
Lys 20.36 20.42 20.77 21.55 6 0.02
Gln 20.27 20.23 21.01 21.51 6 0.13
Asn 20.34* 20.33 20.77 21.43 6 0.10
Arg 20.31* 20.33 20.74 21.39 6 0.11
Glu 20.05* 20.11 21.07 21.23 6 0.03
Ala 20.23 20.08 20.91 21.21 6 0.01
Pro 20.60** 21.18** 20.29 22.07 6 0.03
Ser 20.44** 20.39** 20.50 21.33 6 0.04

*The b-sheet region is characterized by the pair of torsional
angles (f2

b 6 Df2, f1
b 6 Df1) 5 (210° 6 15°, 210° 6 15°) for

all amino acids, except for a few cases where f1
b or f2

b

assumes the value of 180° (indicated by *). Pro and Ser exhibit a
local minimum around (f2, f1) 5 (240°, 240°) (indicated by **)
and are listed separately.
†The errors refer to the differences between two sets3 compris-
ing 150 and 152 PDB structures, respectively.
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with a correlation coefficient of 0.90. We note that the
energy scales in the two sets of data are quite
different. The range of DDGAb scale for b-sheet
formation was pointed out40 to vary widely in two
experiments. The former obtained with the zinc
finger host data,38 shown above, exhibits a rather
narrow range (0.21 kcal/mol), whereas that ob-
tained40 from thermal stability measurements of a
variant of immunoglobin-binding domain B1 from
protein G yields a DDGAb range of 2.05 kcal/mol.
Results are reported therein relative to the free-
energy changes of the alanine-substituted variant.
Comparison of our results with the latter scale is

displayed in Figure 9b. As expected, a significant
decrease in the slope of the best fit line is observed.
The best fit line, excluding the outlier Asp, is ex-
pressed as

DEA(f1
b, f2

b) 2 DEALA(f1
b, f2

b)

5 0.41 DDGAb 2 0.11 (13)

The correlation coefficient decreases to 0.72, the
lowest value among all examined cases. Yet, the
overall correspondence between the present results
and experimental observations may be considered
quite satisfactory, in view of the weak correlation
between the two sets of experimental data.

The role of context as a major determinant of
b-sheet propensity was further emphasized by Mi-
nor and Kim.41 DDGAb values for b-sheet formation
at an edge b-strand are quite different from those
obtained with the same technique at a central strand.
Recently, a designed 11-amino acid sequence was
shown to fold either as an a-helix or a b-sheet,
depending on its position along the primary se-
quence of the IgG-binding domain of protein G.42

Likewise, peptide sequences were shown to assume
a-helical or b-strand, depending on the type of
solvent.43

Smith et al.44 also determined a thermodynamic
scale for b-sheet tendencies, by using the B1 domain
of staphylococcal IgG-binding protein G for muta-
tions. The latter scale is similar to the one proposed
by Minor and Kim.40 Comparison with our doublet
energies (not shown) yields a relationship close to
Eq. (12), with slope 0.33 and correlation coefficient
0.75. Asp is excluded from the least squares fit
calculation in both cases. The free-energy change for
Asp in b-sheet is reported to be remarkably high in
conformity with the result of Minor and Kim,40

whereas no such strong unfavorable effect was found
by Kim and Berg38 or in the present analysis. The
participation of Asp in a b-sheet is possible only by a
distortion of the bond angle f1 by approximately 30°
relative to that in the regular structure, as indicated
in the footnote of Table II, and that this deformation
may not be accommodated in some closely packed
tertiary contexts.

From the above discussion, the coupling between
virtual bond torsions emerges as an important fea-
ture affecting the residue type hierarchic order for
both a-helix- and b-sheet-forming propensities. It is
not hard to understand that the coupled rotations of
virtual bonds i and i 1 1 involve the interaction of
residues i 2 1 and i 1 2 along the backbone and thus
intrinsically include the effect of main-chain hydro-
gen bonds stabilizing a-helices. Inasmuch as each
virtual bond is representative of three real bonds,
the pairwise interdependence of virtual bonds here
includes the coupling of bonds extending up to 12
real bonds along the chain and thus reflects the
relatively long correlations underlying particular

Fig. 9 a: Comparison of the b-sheet propensities of amino
acids obtianed by experiments and in the present analysis. The
abscissa and ordinate, respectively, to the experimental results of
Kim and Berg38 and to the torsional energies EA (f1

b, f2
b)/RT

listed in the last column of Table II. The correlation coefficient
between the two data sets is R 5 0.90. b: b-sheet propensities of
amino acids obtained by experiments and in the present analysis.
The abscissa represents the thermal stability measurements of
Minor and Kim.41 The ordinate follows from Table II, using
EA-ALA(f1

b, f2
b) ; EA(f1

b, f2
b) 2 EALA(f1

b, f2
b) at 300K. The

value R 5 0.79 is obtained, excluding the data for Asp.
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structures. Not only a-helices but also b-sheet propen-
sities are well accounted for with this range of
interactions. Thus, although b-sheets are stabilized
by nonbonded neighbors in the first place, the short-
range cooperative effects nonetheless do complement
effectively the longer range nonbonded interactions.

Contribution of Short-Range Interactions to
Stability: Detection of Structures Having
Nonnative-Like Conformational Energies

The dependence of the total short-range energies
E(Q, F) of the 302 PDB structures on the sizes of the
proteins is shown in Figure 10. The second-order
contributions, E(2)(Q, F), are shown separately, by
the filled circles. The upper triangles represent the
contribution of the coupling between bond torsions,
alone, defined as DE(F) ; oi53

n22 DEi(f2, f1). The
equations of the lines drawn by linear regression are
shown in Figure 10. The average contribution per
residue to the total short-range conformational en-
ergy is 21.87 RT from the slope of the best fit line
through the E(Q, F) values. It is interesting to
observe that approximately half of this, 20.90 RT,
comes from the second-order contributions. The cou-
pling between bond angles and torsions appears to
be stronger than that between pairs of consecutive
torsional angles, which may be verified from the
slope of the upper line, 20.25 RT, reflecting the
coupling between bond torsions only.

The structures that exhibit the least favorable
short-range energies in our data set are listed in
Table III. All structures having E(Q, F)/nRT weaker
than 20.8 are given in the table, in order of increas-
ing short-range energy per residue, displayed in the
third column. The corresponding number of residues
and the first-order contribution per residue are
tabulated in columns 2 and 4. On the other hand,
proteins whose short-range energetics appear to be
unusually favorable (E(Q, F)/nRT # 22.88) com-
pared with other native structures are listed in Table
IV, along with their structural characteristics. The
resolutions of these structures are markedly higher
than those listed in Table III. Another interesting
observation is the usual absence of disulfide bridges
in these structures, whose short-range energetics
are highly favorable and apparently do not require
further stabilization by S-S bridges. Among the
structures listed in Table IV, only the uteroglobin
dimer (2utg) has disulfide bridges (two bridges link-
ing the monomers), whereas disulfide bridges are more
frequent in structures with relatively weak short-range
energies (see Table III). One could argue that some
internal strains may be required to achieve the forma-
tion of disulfide bonds, which are manifested by less
favorable conformational energies in general, whereas
structures devoid of these constraints assume more
probable angles and torsions, leading to favorable appar-
ent short-range energetics.

Threading Experiments: Utility of Combining
Short-Range and Long-Range Interactions

In parallel with our recent test of the performance
of nonbonded potentials,2 inverse folding experi-
ments are performed here for the present short-
range potentials, as well as for a combination of
short-range and long-range (nonbonded) potentials.
A structure-recognizes-sequence protocol is applied,
i.e., sequences taken from PDB are mounted on a
given three-dimensional structure, following the
original work of Hendlich et al.45 to identify the
sequence that yields the lowest energy with a given
fold. Only the backbone, or more precisely the Ca

atoms, are considered for evaluating the short-range
energies, whereas nonbonded energies required2 the
inclusion of the side-chain interaction sites. The
same set of 62 known structures and 32 additional
PDB structures previously selected for threading
experiments2,45 are taken to permit comparison with
previous results.

Results are presented in Table V. The first three
columns give the PDB identifiers of the 62 reference
structures, their sizes, and the total number of
variants threaded on each of them. Here, ‘‘variants’’
refer to sequence fragments of all larger size pro-
teins, obtained by advancing one residue at a time
without permitting gaps or insertions, considering
the complete set of 94 proteins. Obviously, the num-
ber of variants increases with decreasing size of the
reference structure. The rank of the native sequence

Fig. 10: Contribution of short-range interactions of various
types to the conformational energy E(Q, F) of the protein, as a
function of the protein size. The open circles represent the results
for previously listed3 302 PDB structures. A contribution of 21.87
RT per residue is found from the best fit line (correlation coefficient
R 5 0.92). Filled circles represent the second-order contribution
E(2)(Q, F). The least squares fit yields E(2)(Q, F) 5 20.90 nRT, with
R 5 0.95. The open triangles show the contribution of the coupling
between bond torsions, DE(F). Best fit line yields DE(F) 5 20.25
nRT, R 5 0.92.

303SHORT-RANGE INTERACTIONS IN PROTEINS



among all variants, classified on the basis of short-
range conformational energy E(Q, F) given by Eq. (5)
is presented in the fourth column. Fifty of 62 struc-
tures correctly recognize the native sequence.

The short-range energy E(Q, F) of the native
sequence-structure is given in the seventh column.
DE/nRT for short-range interactions, listed in the
eighth column, is the difference between the short-
range energy obtained with the native sequence and

that of the variant yielding the lowest conforma-
tional energy. If the structure correctly recognizes
the native sequence, DE/nRT is negative; otherwise,
it is positive. And the energy gap DE/nRT indicates
how well the native sequence is distinguished. The
12 cases that yield a positive DE are smaller pro-
teins, in general, in conformity with the results from
threading experiments performed with nonbonded
potentials,2 but these are not necessarily the struc-
tures that failed the threading test on the basis of
long-range interactions.

Next, we explore the effect of considering both
short-range and long-range interactions on the per-
formance of threading experiments. The potentials
between nonbonded side chains and/or backbone
interaction sites2 are now taken into consideration,
in addition to short-range energies. This improves
the recognition of native sequences to 55 of 62
structures. In fact, a compensating mechanism be-
tween short-range and long-range interactions is
observed (Table V), which optimizes the stability of
the native structures. For example, among the above-
mentioned 12 cases that fail to recognize the native
sequence on the basis of short-range energies alone,
seven folds (2ca2, 1mbn, 1alc, 2gn5, 1gps, 1atx, and
1cbn) are subject to highly favorable long-range
interactions upon threading of the correct sequence,2

which more than counterbalance the adverse short-
range effects and bring the native sequence to the
first rank in the energy-sorted list (column 6). This
latter rank is obtained for each structure by sorting
the variants in the order of increasing total energy,

TABLE III. Proteins Exhibiting Weak Short-Range
Conformational Energies

Protein
(PDB code) n

E(Q, F)

nRT

E(1)(Q, F)

nRT n (S-S)*
Resolution

(Å)

4rcrh 236 20.74 20.25 — 2.8
3fxc 98 20.74 20.38 — 2.5
1sh1 48 20.73 0.01 3 NMR
3dpa 217 20.72 20.29 — 2.5
1tabi 61 20.70 20.21 4 2.3
1hcc 59 20.67 20.26 2 NMR
2hhrc 204 20.66 20.31 — 2.8
1mona 43 20.60 20.07 — 2.75
1pdc 41 20.61 20.20 — NMR
4tgf 49 20.60 20.43 3 NMR
1bds 43 20.60 20.15 3 NMR
7wga 171 20.60 20.57 16 2.0
1cy3 118 20.59 20.08 — 2.5
2mev4 57 20.54 20.25 1 3.0
2mrt 30 20.50 20.70 — NMR
1mhu 31 20.47 20.37 — NMR
1aaf 54 20.31 20.39 — NMR
1egf 52 20.28 20.16 — NMR
2bpa3 35 20.28 20.16 — 3.4
2gn5 87 20.16 0.71 — 2.3

*Number of disulfide bridges.

TABLE IV. Proteins Exhibiting Strong Short-Range
Conformational Energies

Protein
(PDB code) n

E(Q, F)

nRT

E(1)(Q, F)

nRT
Res
(Å)

1atf 37 24.02 22.62 NMR
2zta 32 24.00 22.39 1.8
1rop 56 23.89 22.35 1.7
256b 106 23.57 22.13 1.4
1ltsc 40 23.35 21.85 1.95
1le4 138 23.33 22.13 2.5
1troa 103 23.28 22.01 1.9
1bbha 130 23.25 21.83 1.8
1coh 141 23.19 21.80 2.9
1ecd 136 23.15 21.78 1.4
1cpcl 173 23.11 21.75 1.66
2ccy 127 23.11 21.81 1.67
1babb 145 23.08 21.79 1.5
2utg 70 22.99 21.70 1.64
1lmb 92 22.98 21.79 1.8
2hmz 113 22.94 21.73 1.66
1fha 179 22.93 21.71 2.4
1wrp 106 22.91 21.74 2.2
1ppt 36 22.88 21.63 1.37
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TABLE V. Results From Threading Experiments

PDB
code*† n

Total
number

of variants

Rank
(short-
range)

Rank
(long-
range)

Rank
(total)‡

E(Q, F)

nRT

DE/nRT
(short-
range)

DE/nRT
(total)

1rhd 292 1548 1 1 1 21.50 20.22 23.82
1pyp 280 1873 1 1 1 20.97 20.17 21.72
1dri 270 2155 1 1 1 22.48 20.19 21.95
1aaib 261 2419 1 1 1 21.17 20.26 22.66
1dnka 259 2452 1 1 1 21.80 20.23 22.22
1caj 258 2570 1 1 1 21.52 20.36 22.64
2ca2(*) 256 2581 2 1 1 21.52 10.03 20.29
1baa 242 3057 1 1 1 21.56 20.13 22.40
3pgm 229 3540 1 1 1 21.04 20.12 21.01
2cla 213 4032 1 1 1 21.94 20.07 20.43
1bbt2 209 4341 1 1 1 21.30 20.21 21.66
1abma 197 4871 1 1 1 22.51 20.17 21.66
3adk 193 5008 1 1 1 22.58 20.15 21.19
1gky 185 5429 1 1 1 22.50 20.21 21.25
1cpca 173 6011 1 1 1 22.87 20.01 23.53
1cpcl 173 6011 1 1 1 23.12 20.09 21.04
1cd4 172 6063 1 1 1 21.15 20.22 21.20
2fcr 172 6063 1 1 1 21.88 20.14 21.99
5p21 165 6433 1 1 1 22.11 20.11 21.45
1l84 161 6665 1 1 1 22.53 20.05 21.12
3dfr 161 6665 1 1 1 21.72 20.12 21.56
5tnc 160 6711 1 1 1 22.76 20.08 20.32
1mbn(*) 152 7172 14 1 1 22.26 10.05 20.67
1lh3 152 7172 1 1 1 22.74 20.05 20.83
1f3g 149 7333 1 1 1 21.27 20.27 21.84
1aak 149 7333 1 1 1 21.78 20.61 21.19
4cln(*) 147 7475 1 4 1 22.11 20.12 20.10
1mba 146 7537 1 1 1 23.14 20.01 21.12
1fx1 146 7537 1 1 1 21.97 20.14 21.81
1babb 145 7601 1 1 1 23.07 20.05 21.77
1barb 137 8116 1 7 1 21.40 20.21 20.22
1end 136 8181 1 1 1 22.69 20.07 22.69
1eco 135 8250 1 1 1 23.14 20.02 20.05
2snm 134 8245 1 1 1 21.84 20.18 20.89
1bbha 130 8595 1 1 1 23.24 20.06 21.00
1ifb 130 8595 1 1 1 21.92 20.35 20.84
1lhm 129 8666 1 1 1 21.81 20.08 21.10
1bw4 124 9024 1 1 1 21.16 20.13 21.16
4p2p 123 9097 1 1 1 22.21 20.09 20.74
1alc(*) 121 9245 4 1 1 21.32 10.03 20.62
1paz 119 9391 1 1 1 21.71 20.18 21.46
1cy3(*) 117 9541 1 22 1 20.59 20.27 20.40
1cd8 113 9844 1 1 1 21.35 20.16 21.38
2ssi 106 10381 1 1 1 21.34 20.11 21.81
1acx 106 10381 1 1 1 20.80 20.24 21.44
1fkf 106 10381 1 1 1 21.63 20.15 21.49
1fdd 105 10468 1 1 1 21.64 20.16 21.02
1aps 97 11142 1 1 1 20.47 20.002 20.58
1ten 89 11711 1 1 1 21.45 20.17 20.66
2gn5(*) 86 12603 12 1 1 20.16 10.06 21.12
1c5a(*) 65 13736 4428 65 60 22.15 10.34 10.67
1nxb 61 14066 1 348 3(**) 21.02 20.38 10.23
1aaf 54 14649 1 1 1 20.31 20.02 20.35
1egf(*) 52 14819 25 19 3 20.28 10.10 10.09
1gps(*) 46 15331 72 1 1 21.41 10.12 20.12
1atx(*) 45 15418 17 1 1 20.92 10.06 20.10
1cbn(*) 45 15418 1236 1 1 21.68 10.37 20.36
1pdc 41 15774 1 1 1 20.58 20.32 20.85
2bpa3 35 16311 1 4684 16(**) 20.27 20.002 10.18
1bba(*) 35 16311 10 178 6 21.83 10.18 10.42
2mrt(*) 29 16864 161 11 2 20.50 10.89 10.01
2mhu 29 16864 4587 4 84(**) 20.26 10.17 10.79

*A synergistic compensating effect between short- and long-range potentials occurs in the proteins marked by an asterisk (in the first
column) such that the corresponding rank on the basis of total potentials (column 9) is improved compared with those obtained by
either short- or long-range interactions only.
†The fifth letter in the PDB code refers to the selected structure in the data bank file, when more than one structure or subunit is
present.
‡The three cases that became worse than either the short-range or long-range ranking are marked with (**) in column 6.
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including both the residue-specific long-range poten-
tials2 and the present short-range energies. The
corresponding energy gap (last column) is in the
range DE/nRT # 21.0 in general, which is sugges-
tive of a high confidence level. Conversely, three
proteins (4cln, 1barb, and 1cy3) whose ranks were
found2 to be .1 on the basis of long-range interac-
tions, are now observed to recognize the correct
sequence upon inclusion of short-range preferences.
These and other examples for which the simulta-
neous consideration of short- and long-range ener-
gies leads to an improvement in the overall ranking
are indicated by asterisks in the first column of
Table V.

The only protein folds that cannot recognize the
correct sequence by using the total energy are 1c5a,
1nxb, 1egf, 2bpa3, 1bba, 2mrt, and 2mhu. All of these
are small proteins (n # 65). We note that some of
these structures might owe their stability to disul-
fide bridges (1nxb, 1c5a) or binding of metals (2mrt,
2mhu). S-S bonds or ligand coordination, which are
not considered in the threading tests, may play a
critical role in determining the correct sequence-
structure matches. We also note that most of these
structures (1c5a, 1egf, 1bba, 2mrt, and 2mhu) are
determined by NMR. 2bpa3 is determined by X-ray
but at relatively poor (3.4 Å) resolution.

A more severe test of the discriminating capabili-
ties of the short-range potentials may be performed
by avoiding being penalized for the unusual confor-
mations assigned to residues exhibiting the most
distinctive distributions of angles. For example, Gly
and Pro are distinguished by their unique distribu-
tions of angles, as may be verified from Figures 2, 3,
5, 6, and 7. Their contributions to the recognition of
the correct sequence-structure pairs on the basis of
short-range energies are therefore expected to be
significant. Calculations repeated by omitting the
contributions of Gly and Pro to overall short-range
energies showed that the performance of threading
experiments based on short-range energies alone
decreased indeed to some extent. Specifically, 12
proteins (1cpca, 1lh3, 1mba, 1babb, 1end, 1eco, 1bbha,
2ssi, 1fkf, 1aps, 1aaf, and 2bpa3) among the 50
structures whose native sequence were correctly
identified in the original calculations failed to recog-
nize their native sequence upon omission of the
contributions of Gly and Pro. However, in all cases,
except 1eco, the native sequence-structure pair was
correctly identified on the basis of total (short-range
and long-range) potentials, the contribution of the
favorable long-range potential dominating the ad-
verse short-range effects.

In sum, the protein folds can be classified into five
categories, depending on their response to the two
types of threading experiments:

(1) Proteins that rank in the first position, both in
short-range and in long-range energy evalua-

tions and thus could correctly identify their
native sequence by using either test. Forty-five
of 62 reference proteins conform with this behav-
ior. These may be viewed as a set of proteins
whose intramolecular interactions conform
closely with those of typical globular proteins,
both on local and global scales. The native
sequence is correctly identified among alterna-
tive primary structures. Proteins belonging to
this category are typically relatively large. The
smallest protein belonging to this set is the
collagen-binding b-domain of the bovine seminal
fluid protein PDC-109 (1pdc), which is composed
of 41 residues. It is noticeable that the native
sequence-structure identification is performed
correctly among 15,774 variants for this protein.

(2) Proteins that rank in the first position with
respect to the total intramolecular potential de-
spite the unfavorable short-range conforma-
tional energies. These are stabilized by side
group-side group (S-S) and side group-backbone
(S-B) interactions between amino acids that are
at least three residues apart along the backbone.
Seven proteins are observed in this class: car-
bonic anhydrase (2ca2), a-lactalbumin (1alc),
myoglobin (1mbn), g1-p thionin (1gps), sea
anemone toxin (1atx), gene5/DNA-binding pro-
tein (2gn5), and crambin (1cbn). For example,
crambin ranks in the 1236th position among
15,418 variants on the basis of short-range inter-
actions alone, but is brought to the first position
by the compensating effect of strong attractive
interactions between nonbonded units.

(3) Proteins whose correct structure-sequence iden-
tification is achieved by the contribution of short-
range interaction energies, despite relatively
unfavorable S-S and S-B interactions. This cat-
egory contrasts the preceding one, in that stabil-
ity is imparted by torsional and bond angle
potentials essentially. Among the 62 reference
proteins, 3, calmodulin (4cln), cytochrome C3

(1cy3), and acidic fibroblast growth factor mu-
tant (1barb) exhibit this behavior. Calmodulin is
not globular but is formed by two lobes connected
by a long helical segment. It is therefore natural
that nonbonded attractions, which are normally
satisfied in compact globular structures, are not
so strong in this conformation. Yet, its short-
range interactions were strong enough to lead to
the lowest total energy among the 7,475 vari-
ants.

(4) Proteins whose rank is improved by a compensat-
ing effect between short-range and long-range
interaction potentials. Together with those cor-
rectly discriminating the correct sequence for the
known fold, a total of 13 proteins, denoted by an
asterisk in the first column of Table V, exhibit
this behavior.
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(5) Notably, only three proteins are ranked worse by
their total energy than by either short-range or
long-range components alone. These are indi-
cated by the double asterisk on the sixth column.

It is interesting to speculate that proteins in these
different classes might exhibit substantially differ-
ent behavior in their folding pathways.

CONCLUSIONS

In this and two recent studies on nonbonded
interactions in globular proteins,2,3 a model consist-
ing of two sites per residue, one on the backbone and
the other on the side group, is exploited as a math-
ematically simple, yet physically adequate, tool for
characterizing the structural preferences of pro-
teins. Long-range and short-range interactions are
analyzed in a self-consistent way in these studies.
Such an analysis is important because various pro-
teins appear to have somewhat different balances
between these two contributions.

The virtual Ca-Ca bond model describes satisfacto-
rily the secondary structure geometry of the back-
bone. The number of parameters is two per residue,
(u, f), just as for the classical (f, c) representation,
and so the substitution occurs without loss of accu-
racy in the position and energetic preference of
a-carbons. Gauche2 and trans states of virtual bonds,
near 60° and 210°, respectively, characterize the
a-helical and b-sheet structures. The bond angle u is
also highly sensitive to the secondary structure; it
has a bimodal distribution with peaks around 90°
and 120°, corresponding to a-helices and b-sheets,
respectively. Thus, a-helices and b-sheet structures
are well characterized in the two-dimensional plots
of coupled geometric variables. The plots in Figure 4,
obtained from all residues, thus reflect the intrinsic
conformational preference of the polypeptide back-
bone. Some particular amino acids exhibit substan-
tial departure from the collective behavior, as illus-
trated in Figures 5–7.

The major difference between present a-helix and
b-sheet propensities and those obtained by directly
counting a-helical and b-strand states for the 20
residue types is the consideration of pairwise interde-
pendence of residue conformational states. The sec-
ond-order contributions in Tables I and II are, in
fact, the major differences between our results and
those found from the observation of individual resi-
dues. The interdependence of bond torsions, as well
as the couplings between bond angles and torsions in
the virtual bond model, are found to contribute
significantly to short-range conformational energet-
ics. These second-order interaction energies there-
fore should be taken into consideration for evaluat-
ing the conformational energy of virtual bond models
used in coarse-grained simulations.

Figures 8 and 9, and several other examples cited
in the section on secondary structure propensities,

show that the doublet torsional energies EA(f1
a, f2

a)
and EA(f1

b, f2
b) listed in Tables I and II provide a

quantitative measure of the helix-forming and
b-sheet-forming tendencies of amino acids and may
be used for a preliminary estimation of the energy
changes involved in mutating residues. It is interest-
ing to observe the existence of a strong correlation
between the present residue-specific potentials
EA(f1

a, f2
a) for a-helix formation, and the thermody-

namic data analysis by others, including the confor-
mational entropy decreases of side chains. The
b-sheet-forming tendencies, on the other hand, ex-
hibit a relatively lower correlation with experiments
for two major reasons. First, these are predomi-
nantly stabilized by long-range interactions and
therefore are only partially accounted for by local
conformational energies. Second, the b-sheet propen-
sities strongly depend on the tertiary context, as
emphasized in several studies.38–42,46

Attempts to combine residues into representative
groups should be undertaken with caution, inas-
much as each amino acid possesses distinct geom-
etry and energy characteristics, either on a local or
on a global scale. On a local scale, as illustrated in
Figures 2, 3, and 5–7, the classification of residues as
a-helix-formers, b-sheet formers or turn formers
seems inappropriate with regard to the distinct
distributions of dihedral angles and bond angles
obeyed by residues assigned in the same class. On a
global scale, size and shape effects play a dominant
role in determining the side-chain coordination geom-
etry.3 This precludes the classification of residues on
the basis of their hydrophobic or polar character,
exclusively.

The residue-specific conformational potentials for
the virtual bond torsions and bond angles are shown
to discriminate correct sequence-structure matches
in more than three fourths of the test structures.
This invites attention to the important role of the
backbone short-range preferences in selecting and
stabilizing native folds.

The utility of combining long-range and short-
range energy contributions is shown by the improve-
ment achieved in sequence-structure recognition re-
ported in our last table for inverse folding
experiments. Among the 62 protein folds considered
in threading experiments, 13 exhibited a compensa-
tion between short-range and long-range energetics,
leading to a high ranking (r # 6) of the native
sequence. Thus, an essential observation is that S-S
and S-B non-bonded potentials (long-range interac-
tions) and residue-specific backbone conformational
energies (short-range interactions) complement each
other in important ways to impart a sufficient stabil-
ity to native structures.
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