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Hypothetical scanning Monte Carlo (HSMC) is a method for calculating the absolute entropy,S, and free
energy,F, from a trajectory generated by any simulation technique. HSMC was applied initially to fluids
(argon and water) and later to peptides and self-avoiding walks on a lattice. In this paper we make a step
further and apply it to a model of decaglycine (atT ) 300 K) in vacuum with constant bond lengths where
external stretching forces are exerted at the end points; the changes inSandF are calculated as the forces are
increased. The molecule is placed initially in a helical structure, which is changed to an extended structure
after a short simulation time due to the exerted forces. This study has relevance to problems in polymers
(e.g., rubber elasticity) and to the analysis of experiments where individual molecules are stretched by atomic
force microscopy (AFM), for example. The results forSandF are accurate and are significantly better than
those obtained by the quasi-harmonic approximation and the local states method. However, the molecule is
quite stiff due to the strong bond angle potentials and the extensions are small even for relatively large forces.
Correspondingly, as the force is increased the decrease in the entropy is relatively small while the potential
energy is enhanced significantly. Still, differences,T∆S, for different forces are obtained with very good
accuracy of∼0.2 kcal/mol.

I. Introduction

Calculation of the entropy and free energy constitutes a central
problem in computer simulation despite the significant progress
achieved in the last 50 years. In particular, one would like to
be able to calculate the absolute entropy,S, and the free energy,
F, from a Monte Carlo (MC)1 or a molecular dynamics (MD)2,3

sample (trajectory) directly, i.e., in the same manner as the
energy, E, or geometrical properties such as the radius of
gyration of a polymer, are obtained. However, while these
simulation methods enable one to sample system configuration
i correctly with its Boltzmann probability,Pi

B, the value ofPi
B

is not provided straightforwardly and thereforeS∼ - lnPi
B and

F (F ) E - TS, where T is the absolute temperature) are
unknown. Still, differences,∆Fm,n (∆Sm,n) between two states
m andn (e.g., a helical and hairpin states of a peptide) can be
obtained by the commonly used thermodynamic integration (TI)
techniques, but only when the absolute entropy of one state is
known can that of the other be obtained. While TI is a robust
approach (see refs 4-9 and references therein), for proteins,
such integration is feasible only if the structural variance
between the two states is very small; otherwise, the integration
path can become prohibitively lengthy and complex. Therefore,
it is important to develop methods that enable one to obtain
Pi

B directly from a given sample, where the absoluteFm (Fn)
can be calculated from a sample of statem (n) leading to∆Fm,n

) Fm - Fn, even for significantly different states, while the
integration process is avoided. Furthermore, because MC (MD)
simulations constitute models for dynamical processes, one
would seek to calculate changes inF andSduring a relaxation
process by assuming local equilibrium in certain parts along

the trajectory; a classic example is simulation of protein
folding.10 Again, such information cannot be obtained by
thermodynamic integration, and methods that estimateSandF
directly from the trajectory of interest should be developed.

An approach for estimating the value of the sampling
probability, Pi

B, from a given MC or MD sample has been
suggested by Meirovitch. Two related techniques, the local states
(LS) method11-15 and the hypothetical scanning (HS) method16-21

have been developed and applied to magnetic systems, polymers,
and peptides. Recently the HS method has been extended to
fluids by two procedures, the grand canonical HS (HSGC)5 and
the Monte Carlo HS (HSMC).6 HSMC has been further
developed to a method named complete HSMC,22,23 which,
unlike HS and HSMC, takes into accountall system interactions
(i.e., short as well as long-range) and in this respect can be
considered to be exact; the only approximation is due to
insufficient MC sampling for calculating the transition prob-
abilities. This method provides rigorous upper and lower values
for F, andF can be obtained from a very small sample, even
from a single conformation.

Complete HSMC is a general technique that has been applied
thus far very successfully to liquid argon, TIP3P water,22,23

peptides,24,25and very recently also to self-avoiding walks on a
lattice.26 In particular, two models of polyglycine molecules of
10 and 16 residues, described by the AMBER force field27 in
vacuum, were studied. One model is based on constant bond
lengths and bond angles (the rigid model), and the other consists
only of constant bond lengths (the flexible model). These models
were simulated by MC in helical, hairpin, and extended states,
and the correspondingFm and Sm were calculated, leading to
very accurate results for∆Fm,n ) Fm - Fn (∆Sm,n), which are
significantly better than those obtained with the LS and the
quasi-harmonic28,29 methods. Our long-term goal is to be able
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to calculate the absolute free energy of a peptide or a surface
loop of a protein immersed in explicit water. Because in all
recent studies the complete version of HSMC has been used,
which also will be the method of choice in the future, we drop
the word complete and call the method HSMC.

With HSMC applied to a peptide,Sis calculated from a given
MC sample by reconstructing each peptide conformation step-
by-step, i.e., calculating transition probabilities (TPs) for the
dihedral angles and fixing the related atoms at their positions.
At each step, the chain’s coordinates that have already been
determined are kept fixed (the “frozen past”) and the TP is
obtained from an MC simulation of the “future” part of the chain
whose TPs as yet have not been determined.

In this paper HSMC is tested further by applying it to the
flexible model of (Gly)10, where the peptide is subjected to
stretching by external forces applied to its end points. This study
has relevance to a wide range of experimental situations in
polymers, such as rubber elasticity.30 Also, single molecule
techniques have been developed where individual molecules can
be manipulated and stretched by external forces using atomic
force microscopy (AFM),31-34 for example. A well-studied case
is the muscle protein titin, where force-extension profiles of
the reversible unfolding of its immunoglobulin-like domains
have been obtained by AFM32,34 and optical tweezers.35 To
interpret these experiments at the atomic level, a series of steered
molecular dynamics (SMD) simulations have been carried out,
mostly by Schulten’s group.36-39 AFM and SMD were also used
to study the unbinding of the avidin-biotin complex,31,35,40and
it is hoped that the mechanisms of ligand-protein and protein-
protein binding in general can be better understood by inducing
such unbinding events.41,42 Force-induced DNA unzipping
experiments also show promise of providing faster methods of
sequence analysis in the future.43 Reconstructing the potential
of mean force along the SMD trajectories is an important goal
of these calculations.44,45

Thus, just as the temperature affects biomolecular motions
and transitions among conformational microstates, the external
force is another available parameter that can be readily tuned
within the framework of current experimental techniques.
Correspondingly, in simulations, under the action of suitable
external forces, a peptide can undergo conformational changes
from a helix to an extended state, for instance, where the free
energy calculated with HSMC provides the thermodynamic basis
for such transitions. Thus, the scope of HSMC as a general tool
is widened, which enables us in the present study to gain insight
into the behavior of a small molecule, such as decaglycine, under
stretching.41,42

II. Theory and Methodology

A. The Model Studied. We study a model of polyglycine,
NH2(Gly)10CONH2 [(Gly)10] in vacuum defined by the AM-
BER96 force field,27 where the charges of the end groups are
neutralized. In this model the bond lengths are constant, and
therefore a conformation is determined by the dihedral angles
æi,ψi, andωi and the bond anglesθi,l (i ) 1,10,l ) 1,3) ordered
along the chain, which for simplicity are denoted byRk, k )
1,60. An external forceKB in the-zand+zdirections is exerted
on the CRatoms of the first and last residues with coordinates
rb(1) andrb(10), respectively. The corresponding external energy
is KB‚RB, whereRB ) rb(10)- rb(1) is the end-to-end vector defined
by these CR atoms. However, for simplicity we shall omit the
vector notation, denoting the force byK, which is practically
in the z direction, and byR the projection ofRB on the force
vector; thus, the external energy is denoted byKR. This model

is simulated with the Metropolis MC method1 in internal
coordinates using the program TINKER.46 The simulations start
from a helical structure, and the entropy and free energy at
constant absolute temperatureT are calculated by the HSMC
method for increasing values ofK.

It should be pointed out that MD and MC are most
straightforwardly carried out in Cartesian coordinates; however
(as discussed in ref 25), we have found MC simulations in
Cartesian coordinates (i.e., for a fully flexible model) to be
extremely inefficient, while significantly higher efficiency has
been achieved with the present model that is based on internal
coordinates. However, while the LS, the quasi-harmonic, and
the HSMC methods are implemented naturally in internal
coordinates, they can also be applied to samples generated by
MD, for example, where the analyzed conformations are
transferred from Cartesian to internal coordinates.

B. Statistical Mechanics of a Peptide in Internal Coordi-
nates.The partition function of a peptide,Z, is an integral over
the function exp(-E/kBT) (E is the potential energy andkB the
Boltzmann constant) with respect to the Cartesian coordinates
over the whole conformational space,W. However, for a stable
microstate (like the helix) the integration is carried out only
over the limited regionW0 that defines this microstate. As said
above, to apply HSMC or LS, one has to change the variables
of integration from Cartesian to internal coordinates, which
makes the integral dependent also on a Jacobian,J. For a linear
chain,J has been shown to be independent of the dihedral angles
and is a simple function of the bond angles and bond
lengths.28,47,48Thus, in previous LS and HSMC studies of linear
and cyclic peptides, and surface loops in proteins, an ap-
proximate transformation to dihedral and bond angles was
adopted where the bond lengths were kept constant (see
below).13,14,49

The transformation from Cartesian to the internal coordinates,
Rk, k ) 1,60, is applied under the assumption that the potentials
of the bond lengths (“the hard variables”) are strong and
therefore their average values can be assigned toJ, which to a
good approximation can be taken out of the integral. For the
same reason, one can carry out the integration over the bond
lengths (assuming that they are not correlations with theRk)
and the remaining integral becomes a function of the 6N dihedral
and bond angles (Rk)28,47,48and a Jacobian that depends only
on the bond angles. An expression for the partition function
with an external forceK is

where [Rk] ) [R1,...R6N]. D is a product of the integral over the
bond lengths and their JacobianJ. The Jacobian [Πk sin(θk)] of
the bond angles,θk, that should appear under the integral is
omitted for simplicity. We assumeD to be the same (i.e.,
constant) for different forces, and therefore lnD cancels and can
be ignored in calculations of free energy and entropy differences
for different forces. The Boltzmann probability density corre-
sponding toZ (eq 1) is

and the exact entropySand exact free energyF (defined up to
an additive constant) are

Z′ ) DZ )

D∫Ω0
exp{-[E([Rk]) - KR([Rk])]/kBT} dR1...dR6N (1)

FB([Rk]) ) exp{ -[E([Rk]) - KR([Rk])]/kBT}/Z (2)

S) -kB∫Ω0
FB([Rk])lnFB([Rk]) dR1....dR6N (3)
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and

As discussed in earlier applications of the HSMC method, the
fluctuation ofF is zero,50 because the integrand,E([Rk]) + kBT
lnFB([Rk]) - KR([Rk]) ) - kTlnZ ) F, is constant and equal to
F for any set [Rk]. This means that the free energy can be
obtained from any single conformation if its internal and external
energies and the Boltzmann probability density are known.
Using the HSMC method, it is possible to estimate the free
energy of the system from any single structure. Notice that the
fluctuation of an approximate free energy (i.e., based on an
approximate probability density) is finite and it is expected to
decrease as the approximation improves.8,9,20-24,50

C. Exact Scanning Procedure.The HSMC method is based
on the ideas of the exact scanning method, which is a step-by-
step construction procedure for a peptide.51,52Thus, anN-residue
conformation of polyglycine in the helical region (Ω0), for
example, is built by defining the anglesRk step-by-step with
transition probabilities (TPs) and adding the related atoms;52

for example, the angleæ determines the coordinates of the two
hydrogens connected to CR and the position of C′. Thus, at step
k, k-1 anglesR1, ‚‚‚,Rk-1 have already been determined; these
angles and the related structure (the past) are kept constant, and
Rk is defined with the exact TP densityF(Rk|Rk-1‚‚‚R1),

where dRk is a small segment centered atRk, andZfuture(Rk‚‚‚R1)
is a future partition function defined over the helical region
Ω0 by integrating over the future conformations defined by
Rk+1‚‚‚dR6N (within Ω0) where the past angles,R1‚‚‚Rk, are held
fixed

The probability density of the entire conformation is

This construction procedure is not feasible for a large molecule
and in practice can be carried out by scanning only a limited
number of future angles;51,52 however, the ideas of the exact
scanning method constitute the basis for HSMC, as discussed
in what follows.

The exact scanning method is equivalent to MC and MD in
the sense that large samples generated by all these methods lead
to the same averages and fluctuations within the statistical errors.
Therefore, one can assume that a given MC sample has rather
been generated by the exact scanning method, which enables
one to reconstruct each conformation by calculating the TP
densities that hypothetically were used to create it step-by-step.
This idea has been implemented initially in two different ways,
by the LS and the hypothetical (HS) methods. However, an exact
reconstruction of the TPs (eq 5) is feasible only for a very small
peptide. Therefore, calculation of future partition functions (eq
6) by these methods has been carried out only approximately,
by considering a partial future (or past in the case of LS). As

described later, with HSMC the entire future is considered and
in this respect the method can be considered to be exact. Because
some elements of LS are implemented within the framework
of HSMC we describe the LS method first.

D. The Local States (LS) Method.In the first step the MC
sample (of a given microstate) is visited and the variability range
∆Rk is calculated, whereRk are the dihedral and bond angles, 1
e Rk e 6N13,14,25

whereRk(max) andRk(min) are the maximum and minimum
values ofRk found in the sample, respectively. Next, the ranges
∆Rk are divided intol equal segments, wherel is the discreti-
zation parameter. We denote these segments byνk, (νk ) 1,l).
Thus, an angleRk is now represented by the segmentνk to which
it belongs and a conformationi is expressed by the correspond-
ing vector of segments [ν1(i), ν2(i), ‚‚‚, ν6N (i)]. Under this
discretization approximationF(Rk|Rk-1‚‚‚R1) can be estimated
by

wheren(νk,‚‚‚,ν1) is the number of times the local state [i.e.,
the partial vector (νk,‚‚‚,ν1) representing (Rk,‚‚‚,R1)] appears in
the sample. Because the number of local states increases
exponentially withk, one has to resort to approximations based
on smaller local states that consist ofνk and theb angles
preceding it along the chain, i.e., the vector (νk,νk-1,‚‚‚,νk-b) ;
whereb is the correlation parameter. The sample is visited for
the second time, and for a givenb one calculates the number
of occurrencesn(νk,νk-1,‚‚‚,νk-b) of all the local states from
which a set of transition probabilitiesp(νk| νk-1,‚‚‚, νk-b) are
defined. The sample is then visited for the third time, and for
each memberi of the sample one determines the 6N local states
and the corresponding transition probabilities, whose product
defines an approximate probability densityFi(b,l) for conforma-
tion i

where the larger areb and l, the better the approximation (for
enough statistics); notice thatFi(b,l) depends on the external
force, K, only implicitly. Fi(b,l) allows one to define an
approximate entropy and free energy functional,SA and FA,
which constitute rigorous upper and lower bounds for the correct
values, respectively,17

and

where〈E〉 is the Boltzmann average of the potential (force field)
energy, estimated from the MC sample andFB(eq 2) is the
Boltzmann probability density with which the sample has been
generated.SA is estimated from a Boltzmann sample of sizen
by ShA,

F ) ∫Ω0
FB([Rk])[E([Rk]) + kBTlnFB([Rk]) -

KR([Rk])] dR1....dR6N (4)

F(Rk|Rk-1‚‚‚R1) ) Zfuture(Rk‚‚‚R1)/[Zfuture(Rk-1‚‚‚R1) dRk]
(5)

Zfuture(Rk,‚‚‚,R1) )

∫Ω0
exp-[(E(R6N,‚‚‚,R1) - KR)/kBT] dRk+1‚‚‚dR6N (6)

FB(R6N,‚‚‚,R1) ) ∏
k)1

6N

F(Rk|Rk-1‚‚‚R1) (7)

∆Rk ) Rk(max)- Rk(min) (8)

F(Rk|Rk-1‚‚‚R1) ≈ n(νk,‚‚‚,ν1)/{n(νk-1,‚‚‚,ν1)[∆Rk/l]} (9)

Fi(b,l) ) ∏
k)1

6N

p(νk|νk-1,...,νk-b)/(∆Rk/l) (10)

SA ) - kB ∫FB lnF(b,l) dR1‚‚‚dR6N (11)

FA ) 〈E〉 - TSA - K〈R〉 )

〈E〉 - K〈R〉 + kBT∫FB[lnF(b,l)] dR1‚‚‚dR6N (12)

ShA ) -
kB

n
∑
t)1

n

lnFt(b,l) (13)
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As discussed in section II.B, the fluctuation (standard deviation)
σF of the correct free energy is zero, while the approximateFA

has finite fluctuation,σA (estimated byσA), which is expected
to decrease as the approximation improves,8,9,20-24,50

It should be noted that eqs 12-14 also hold for the HSMC
procedures described later, whereF(b,l) is replaced byFHS.

The LS method can be applied to any chain flexibility, i.e.,
it is not limited to harmonic or quasi-harmonic fluctuations, and
free energy difference between two microstates with a significant
structural variance can be obtained from two samples represent-
ing these microstates.

E. The HSMC Method. As discussed in section II.C, the
idea of the hypothetical scanning (HS) method is to reconstruct
each sample conformation step-by-step, obtaining the TP density
of eachRk (eq 5) by calculating the future partition functions
Zfuture (eq 6). However, a systematic integration ofZfuture based
on the entire future within the limits ofΩ0 is difficult and
becomes impractical for a large peptide whereΩ0 is unknown.
The idea of the HSMC method is to obtain the TPs (eq 5) by
carrying out MC simulations of the future part of the chain rather
than by evaluating the integrals defining Zfuture (eq 6) systemati-
cally. Thus, at reconstruction stepk of conformationi, the TP
density,F(Rk|Rk-1‚‚‚R1), is calculated fromnf MC steps (trials),1

where the entire future of the peptide can move by changing
the future anglesRk,‚‚‚,R6N, while the anglesR1,‚‚‚,Rk-1 and
their related atoms (defining the past) are kept fixed at their
values in conformationi. A small segment (bin)δRk (see also
eq 5) is centered atRk and the number of MC visits to this bin,
nvisit, during the simulation is calculated; one obtains

where the relation becomes exact for very largenf (nf f ∞)
and a very small bin (δRkf 0) (see discussion in ref 25). The
product of these TP densities leads to the probability density
of the entire chain (eq 7). Notice that unlike the deterministic
calculation ofZfuture, (eq 6), where the limits ofΩ0 are in practice
unknown, with HSMC the future structures generated by MC
at each stepk remain in general within the limits of the wide
microstateΩ0 defined by the analyzed MC sample. In some
cases, however, the future samples might escape from this
region; therefore, before applying the HSMC method, the LS
method is applied to the analyzed sample and theRk(min) and
Rk(max) values (eq 8) are calculated. They are then used to
keep the future structures withinΩ0 by rejecting MC moves
with angle values beyond those ofRk(min) and Rk(max). It
should be pointed out, however, that when a force is exerted
the molecule stays atΩ0, and this precaution (while used) is
unnecessary.

While HSMC considers the entire future, in practice
F(Rk|Rk-1‚‚‚R1) (eq 15) will be somewhat approximate due to
insufficient future sampling (finitenf), a relatively large bin size
δRk, an imperfect random number generator, etc. Therefore, the
corresponding probability density [approximatingFB (eq 7)] will
be denoted byFHS([Rk]) [for the sake of brevity we useFHS([Rk])
rather thanFHSMC([Rk])]. FHS([Rk]) defines approximate entropy
and free energy functionals,SA andFA, whereFHS([Rk]) replaces
F(b,l) in eqs 11 and 12, respectively.SA andFA are expected to
overestimate and underestimate, respectively, the correct values,
where the fluctuation ofFA, σA (eq 14) does not vanish, but

decreases as the approximation improves, i.e., asnf increases
and/orδRk decreases.

F. Upper Bounds for the Free Energy. In addition to
FA(FHS([Rk])) (eq 12), which in practice is a lower bound, one
can define another approximate free energy functional de-
notedFB,17

According to the free energy minimum principle,53 FB g F (eq
4). Thus,FB is an upper bound which approaches the correct
free energy,F, whenFHS f FB (eq 2). It is necessary to rewrite
eq 16 such thatFB can be estimated by importance sampling
from a (Boltzmann) sample of configurations generated with
FB(rather thanFHS). It has been shown that

In practice,FB is estimated as the ratio of simple arithmetic
averages, which are accumulated for each of the quantities in
the brackets in eq 17. It should be noted, however, that the
statistical reliability of this estimation (unlike the estimation of
FA) decreases sharply with increasing system size, because the
overlap between the probability distributionsFB and FHS

decreases exponentially [see discussion in ref 14].
With values for bothFA andFB, their average,FM, defined

by

often becomes a better approximation than either of them
individually. This is provided that their deviations fromF (in
magnitude) are approximately equal and that the statistical error
in FB is not too large. Typically, several improving approxima-
tions for FA, FB, andFM are calculated and their convergence
enables one to determine the correct free energy with high
accuracy.

It should be pointed out that the probability distribution
defined by HSMC is stochastic as compared to the deterministic
distribution (for a given sample) obtained by the LS method
and the deterministic HS method. In ref 23 we have proved
that the inequalitiesFA e F e FB hold for the stochastic
probabilities as well.

G. Exact Expression for the Free Energy.As shown for
fluids in ref 23, the denominator ofFB in eq 17 defines an exact
expression for the partition function,

and an exact expression for the correct free energyF, denoted
by FD, is

FB ) ∫Ω0
FHS([Rk])[E + kBT lnFHS([Rk]) - KR] dR1‚‚‚dR6N

(16)

FB )

∫Ω0
FB[FHS exp[(E - KR)/kBT](E + kBT lnFHS - KR)] dR1‚‚‚dR6N

∫Ω0
FB[FHS exp[(E - KR)/kBT]] dR1‚‚‚dR6N

(17)

FM ) (FA + FB)/2 (18)

1
Z

) 1
Z∫Ω0

FB(FHS/FB) [dRk] )

∫Ω0
FB(FHS exp[(E - KR)/kBT]) [dRk]

) ∫Ω0
FB exp[FHS/kBT] [dRk] (19)

FD ) kBT ln(1Z) ) kBT ln[∫Ω0
FB exp[FHS/kBT] [dRk]] (20)

σA ) [1n∑
t)1

n

[FhA - Et - kBT lnFt(b,l) + KRt]
2]1/2

(14)

F(Rk|Rk-1‚‚‚R1) ≈ nvisit/[nfδRk] (15)
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where [dRk] ) dR1‚‚‚dR6N and FHS/kBT ) (E[Rk] - KR[Rk])/
kBT + lnFHS[Rk].

In practice, the efficiency of estimatingF by FD depends on
the fluctuation of this statistical average, which is determined
by the fluctuation ofFHS exponentiated. Obviously, asFHS f
F (i.e., FHS f FB), all fluctuations become zero andF can be
obtained from a single configuration (see discussion following
eq 4 and ref 23). Therefore (as forFB), the direct calculation of
F through FD will not be as statistically reliable as the
corresponding calculation for the lower bound estimate,FA;
however,FD is expected to be more statistically reliable than
FB which is defined as a ratio of two summations similar to
that definingFD.

H. The Quasi-Harmonic Approximation. With the quasi-
harmonic approximation,28,29 the entropy,SQH, is given by

whereσ is the determinant of the covariance matrix of the 6N
dihedral and bond angles. BecauseSQH takes into account only
the covariances (higher order correlations are ignored) it
constitutes an upper bound (SQH gS).

I. Calculation of Differences in S and F by Thermody-
namic Integration. The end-to-end distance,R, can be ex-
pressed as the derivative of the free energy with respect to the
external force

As the force increases, the extension increases and the free
energy must decrease. The difference in free energy for two
values of the external force can also be calculated from eq 22
by carrying out MC simulations for intermediate forces and
integrating theR(K) curve (∫R dK). Also, the difference in the
(Helmholtz) free energy∆F1,2

H for forcesK1 andK2 is equal to
the reversible amount of mechanical workw to go from state 1
to state 2,

therefore, the change in entropy can be calculated by numerically
integrating the work (-K dR) between states 1 and 2 and adding
the difference in potential energy,∆E1,2. Like the free energy,
the entropy decreases as the molecule is stretched because of
the loss in conformational freedom.

If the external force is applied to a helix state, the conforma-
tion remains helical for small values of the force with the only
effect being an overall stretching of the molecule in the direction
of the force and a contraction in the direction perpendicular to
the force. As the force increases beyond a critical value, the
molecule no longer remains helical where an abrupt transition
to the extended state occurs. The passage from the helical to
the extended state is not continuous because these low energy
states are well separated on the free energy landscape.

III. Results and Discussion

A. Simulation and Computational Details. Samples of
stretched (Gly)10 were generated by the Metropolis MC proce-
dure1 at 300 K, where a trial structure was obtained by changing
all the 60 dihedral and bond angles,Rk. A trial dihedral angle
k (k ) 1,3N) was defined randomly within(2° of its current
value, whereas a trial bond angle was determined by first

selecting a cosine value at random within the range cos[θ0(k)]
(δ (i.e., by considering the Jacobian), whereθ0(k) is the current
value of bond anglek (k ) 1,3N) andδ ) 0.005; the chosen
cosine values were then translated into bond angles through the
arccosine function. These simulations were started from a helical
conformation that was obtained by minimizing the initial
structure defined byæk ) ψk ) -55° and ωk ) 180°. As
discussed earlier, the external force was exerted on the first and
last CR atoms in the-z and +z directions, respectively. The
first 5000 MC steps were used for equilibration and then 500,000
MC steps were performed. A configuration was retained for
future analysis every 200 MC steps; in this way several samples,
each of 2500 structures were generated for different values of
the external force. Using the above parameters, the MC
acceptance rates values are 55, 41, 35 and 20% for the forces,
K ) 8, 20, 40, and 100 kcal/(mol‚Å), respectively.

As expected, as the external force is increased the molecule
becomes extended further along thez-axis and contracts along
the x- and y-axes. Correspondingly, the potential energy and
the absolute value of the external energy (-KR) increase with
increasingK. This behavior is also reflected by the correspond-
ing ∆Rk values (eq 8) that in most cases decrease asK is
increased (see Table 1), representing relatively concentrated
samples due to stretching. For example, for the second residue,
∆æ decreases from 90° to 79°, 68°, and 59° as the force is
increased from 8 to 20, 40, and 100, kcal/(mol‚Å), respectively;
see Figure 1. In the figures the structures for K) 2 and K)
100 are shown, as they show the most dramatic differences in
structure. Notice, however, that due to correlations each

TABLE 1: Differences (in degrees) between the Minimum
and Maximum Values of the Dihedral Angles (eq 8) of
(Gly)10 for Three Different Values of the External Force (K)a

K ) 8 K ) 20 K ) 40 K ) 100

Res. # ∆æ ∆ψ ∆ω ∆æ ∆ψ ∆ω ∆æ ∆ψ ∆ω ∆æ ∆ψ ∆ω

1 360 99 60 110 58 55 360 47 54 222 34 48
2 90 135 56 79 79 50 68 60 42 59 51 40
3 129 101 55 83 68 51 78 55 43 50 45 43
4 89 82 53 83 70 47 73 58 45 60 46 44
5 103 74 49 80 57 54 63 62 46 67 44 47
6 105 91 51 89 74 43 59 53 42 52 41 39
7 99 97 48 81 63 43 66 51 42 61 45 41
8 97 70 54 81 62 45 76 51 38 62 41 47
9 95 72 51 81 63 56 66 54 46 59 39 41
10 107 92 45 97 70 47 73 51 47 62 46 42

a The angles are calculated for samples of 2500 conformations; the
force is given in kcal/(mol‚Å).

Figure 1. A picture (generated using gOpenMol) of the peptide
subjected to external forces (in the horizontal direction in the picture)
of K ) 2 and 100 kcal/(mol‚Å). For K ) 2, the molecule is still
approximately helical with end-to-end distance ofR ) 21.7 Å. ForK
) 100 kcal/(mol‚Å), the helix becomes an extended structure that is
stretched significantly toR ) 36.8 Å with decreased conforma-
tional freedom. This is a pictorial illustration for the results of∆Rk

(Table 1), which are shown to decrease as the external force increases.
Similar figures for the forcesK ) 8, 20, and 40 are not provided be-
cause the corresponding extensions are close to that ofK ) 100 (see
Table 4).

SQH ) (1/2)6NkB + (1/2)kBln[(2π)6Nσ] (21)

R ) - ∂F
∂K

(22)

w ) ∆F1,2
H ) T∆S1,2 - ∆E1,2w

T∆S1,2 ) w + ∆E1,2 ) -∫R1

R2 K dR + ∆E1,2 (23)
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microstate is significantly smaller than the corresponding region,
∆R1×∆R2×.....×∆R60.

For small values of the external force, the conformations
remain helical during the entire simulation, but forK ≈ 4 kcal/
(mol‚Å), the molecule that stays initially in the helical region
is transformed after a short simulation time into an extended
state. The stronger isK, the shorter is this time, where for large
enoughK, the (metastable) helical state is hardly observed in
the trajectory. The HSMC method is applied to samples
(obtained from different values of the external force) consisting
of the (most stable) extended conformations.

The TPs and their product,FHS (eqs 7 and 15) were calculated
by reconstructing each conformation step-by-step with MC
simulations of the future part, where the geometrical restriction
defined by the∆Rk is applied as well. To check the convergence
of the results, they were calculated for four future sample sizes,
nf ) 20 000, 40 000, 80 000, and 160 000, generated by retaining
a conformation every 10 MC steps, and for four bin sizes,δ )
∆Rk/60, ∆Rk/30, ∆Rk/15, and 20° centered atRk (i.e., Rk (δ/
2). Notice that as for the LS method, the bin size is proportional
to ∆Rk. If the counts of the smallest bin are smaller than 50,
the bin size is increased to the next size, and if necessary to the
next size (δ ) ∆Rk/15), etc. In the case of zero counts,nvisit is
taken to be 1; however, zero counts is a very rare event. Samples
of 600 structures forK ) 8, 20, 40, and 100 kcal/(mol‚Å) were

analyzed using HSMC and the corresponding entropy and free
energy results are summarized in Tables 2 and 3.

B. Results for the Entropy. It should first be pointed out
that as for the dihedral angles, eq 15 was used withδRk also
for the bond angles, i.e., without considering the Jacobian
component [Πksin(θk)], because we have found that to a good
approximation, the contribution of the Jacobian to the entropy
cancels out in entropy and free energy differences, which are
our main interest.

Table 2 contains results (atT ) 300 K) for the entropy,TSA

(eq 11) for four different external forces. For each force, 600
configurations (out of the entire sample size of 2500) were
analyzed, and the results were calculated for four different future
sample sizesnf and four bin sizes. However, the extent of
convergence of these results is demonstrated by the best ones,
i.e., those for the two smallest bin sizes,∆Rk/60 and∆Rk/30,
and therefore only they are presented in the table. Results were
calculated for partial samples of size 100, 200, 300, 400, 500,
and 600, where typically the entropy (SA) and energy for sample
sizes 300-600 have been found to converge, i.e., to fluctuate
slightly around an average value; the statistical errors were
obtained from these fluctuations.

The accuracy of HSMC can always be improved by decreas-
ing the bin size and increasing the future sample size, meaning
that the correspondingSΑ is expected to decrease, provided that
the probability densityFHS is defined on the same conformational
space that was generated by MC simulation. Indeed, forK ) 8
and 20 the central values decrease or remain constant for each
bin asnf increases; a similar picture is shown forK ) 40 and
100, even though in some cases this trend is reversed, probably
due to insufficient equilibration for the high external forces for
the smallernf values (20000 and 40000), which leads to elevated
SA results. However, almost always these differences are
insignificant within the statistical errors, meaning that for the
present accuracy a future sample of 80 000 and even 40 000 is
sufficient.

As expected, the values for the smallest bin,∆Rk/60 are
slightly lower than the corresponding values for∆Rk/30 (even
though in most cases the differences are covered by the error
bars) meaning that convergence has not been attained completely
with respect to the bin size; however, the differencesT[SΑ(∆Rk/
30) - SΑ(∆Rk/60)] for nf ) 160 000 are almost equal, 0.2-0.3
kcal/mol for all forces, i.e., the extent of convergence is about
the same and therefore correct entropy differences are expected
to be obtained from differences inSΑ. In fact, the molecule is

TABLE 2: Entopy, TSA (T ) 300 K) in kcal/mol (eq 11) for
Various Bin Sizes (eq 5) and Future Sample Sizes,nf,
Obtained with the HSMC Method for Different Values of
the External Force Ka

bin size nf K)8 K )20 K )40 K )100

∆Rk/30 20 000 99.9 (3) 96.5 (2) 92.6 (4) 89.2 (3)
40 000 99.4 (3) 96.3 (1) 92.6 (3) 89.1 (3)
80 000 99.3 (3) 96.2 (2) 92.7 (3) 89.2 (3)
160 000 99.3 (2) 96.2 (2) 92.7 (3) 89.2 (3)

∆Rk/60 20 000 99.4 (3) 96.0 (2) 92.1 (4) 88.7 (3)
40 000 99.1 (2) 96.0 (2) 92.3 (3) 88.8 (3)
80 000 99.1 (2) 95.9 (1) 92.4 (3) 88.9 (3)
160 000 99.1 (2) 95.9 (2) 92.4 (3) 88.9 (3)

TSQH 110.2 (4) 106.5 (3) 104.2 (4) 98.0 (5)
TSLS 114.7 (5) 110.1 (3) 105.9 (4) 101.4 (5)

a ∆Rk is defined in eq 8. The HSMC results are based on a sample
of 600 conformations.K is given in kcal/(mol‚Å). The statistical errors
are given in parentheses, e.g., 99.1 (3)) 99.1( 0.3.SQH is the quasi-
harmonic entropy (eq 21) andSLS (eqs 11 and 13) is the local states
(LS) entropy obtained forb ) 1 andl ) 10. The entropy is defined up
to an additive constant.

TABLE 3: HSMC Results for Various Free Energy Functionals for Four Different Values of the External Force Ka

K ) 8 K ) 20 K ) 40 K ) 100

HSMC/ nf -FA -FB σA -FA -FB σA -FA -FB σA -FA -FB σA

20 000 422.7(5) 415.1 3.4 845.3(2) 836.2 2.9 1558.7(6) 1547.4 3.7 3744.3(6) 3734.4 3.9
40 000 422.4(4) 415.3 2.9 845.3(2) 836.6 2.5 1558.9(6) 1547.9 3.2 3744.4(6) 3737.1 3.2
80 000 422.3(4) 416.1 2.7 845.2(2) 836.3 2.2 1559.0(6) 1548.6 3.2 3744.5(6) 3737.9 2.7
160 000 422.3(4) 416.9 2.7 845.2(2) 837.3 2.2 1559.0(6) 1548.4 3.2 3744.5(6) 3738.3 2.5
-FD-FM 418.6 419.6 840.1 841.3 1551.5 1553.7 3740.5 3741.4
-FQH 426.9 (2) 852.4 (2) 1569.0 (2) 3750.9 (4)
-FLS 431.3 (4) 856.0 (2) 1570.6 (3) 3754.3 (4)
Eint -43.5 (2) -39.5 (4) -27 (1) 23.1 (8)
- Etot 323.3 (3) 749.3 (3) 1466.6 (5) 3655.6 (3)

a FA (eq 12) andFB (eqs 16 and 17) are lower and upper bounds of the free energy, respectively, andσA (eq 14) is the fluctuation ofFA. These
HSMC results were obtained from samples of 600 conformations. These results are presented only for the smallest bin size,δ)∆Rk/60, but for all
future sample sizesnf. The results forFM (eq 18)- the average ofFA andFB, and forFD (eq 20)- the exact free energy functional, are calculated
for δ)∆Rk/60 andnf )160 000 only.FQH (eq 21) andFLS (eq 12) are free energies obtained by the quasi-harmonic approximation and the local
states method, respectively, and are based on larger samples (see text). The average potential energy,Eint and the total energy,Eint ) Eint + Eext of
the HSMC samples (in kcal/mol) appear in the bottom rows. All free energies (atT ) 300 K) are in kcal/mol and are defined up to an additive
constant.K is given in kcal/(mol‚Å). The statistical error is defined in the caption of Table 2. We estimate the errors inFB andFD to be larger than
the corresponding errors inFA at least by a factor of 3 and 2, respectively.
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already relatively stiff forK ) 8 and the change,T[SΑ(K )
100) - SΑ(K ) 8)] ≈10 kcal/mol is therefore relatively small
as well.

The HSMC entropy results (TSΑ) are compared in the table
with those obtained using the LS method and the quasi-harmonic
(QH) approximation. For this we generated larger sample of
sizes 15 000 and 30 000 for the QH and LS, respectively,
imposing the geometric restriction as explained earlier. As
expected, both methods lead to results that are larger than the
HSMC values, by up to 15 kcal/mol, i.e.,∼15% (LS, usingb
) 1 andl ) 10) and 12 kcal/mol (QH).

C. Results for the Free Energy.Results for the free energy
functional,FA (eq 12) and its fluctuation,σA (eq 14),FB [eqs
16 and 17],FD (eq 20), and the energies are presented in Table
3. These results are given only for the smallest bin, becauseFA

values for the bin,∆Rk/30, can be obtained from the entropies
of Table 2 and the energies provided in the bottom of Table 3.

The results forFA follow the opposite trend observed in Table
2 for the entropy, i.e., forK ) 8 andK ) 20, FA increases or
remains unchanged as the sample sizenf increases, in accordance
with FA being a lower bound. ForK ) 40 andK ) 100, this
trend is changed some times according to the behavior ofSA

discussed in the previous section. As forSA, differences inFA

are expected to represent faithfully the exact ones. The values
of σA, as expected, decrease or remain unchanged as the future
sample size increases, but within relatively large statistical errors.

The results forFB (eqs 16 and 17), which constitutes an upper
bound for the free energy, indeed in most cases show the
expected decrease asnf is increased, and they are larger than
theFA values. However, the corresponding values for the larger
bin, ∆Rk/30 (not shown) are smaller than those presented in
the table (for∆Rk/60), which suggests that theFB results are
not yet statistically converged, i.e., much larger samples are
needed; also, it is difficult to calculate their statistical errors,
which we estimate to be at least three times larger than the
corresponding errors presented forFA. The same discussion
applies toFD, which is expected, however, to be statistically
more reliable thanFB; we estimate its errors to be at least twice
as large as those presented forFA(nf ) 160 000). Still, we
present the results forFM, the average ofFA andFB, which are
close to theFD values (maximum difference∼1.5 kcal/mol),
and constitute estimates for the correct free energy; the
differences,FM - FA are∼2.7, 3.9, 5.3, and 3.1 kcal/mol for
K ) 8, 20, 40, and 100, respectively, and we expect the correct
values to be closer toFA than toFM. Although these differences
might seem large, the relative differences are small (smaller
than 0.6% and forK ) 100∼0.08%). Since the relatively large
external force (see Table 3) sets the scale for the free energy of
the system, the contribution of the entropy to the absolute free
energy as well as to free energy differences for various external
forces is quite small. As for the entropy, the QH and LS results
constitute a significant underestimation of the free energy.

The results shown thus far suggest that the model of peptide
used is quite stiff. This is also demonstrated in Table 4 by the
relatively small increase in the extension (∆R) 1.8 Å) in going

from K ) 8 to K ) 100, and a relatively small (expected)
decrease in the corresponding entropy byT∆S ) ∼10 kcal/
mol. On the other hand, the change in the potential energy is
relatively large∆Eint ) ∼66 kcal/mol, due to strong bond angle
potentials, and the change in the energy due to the external force
is 1.8× 92 ∼ 166 kcal/mol.

D. Results from Thermodynamic Integration and Free
Energy Derivatives.The relatively small changes in the entropy
as the forces increase are also shown in Table 5, where they
are compared with results obtained by thermodynamic integra-
tion using eq 23. The latter results were calculated as follows:
the segment [Ki, Ki+1] was divided into 20 equal values, and
for each value an MC sample of 600 structures was generated
(imposing the∆Rk restrictions) where the corresponding exten-
sionRwas calculated. The difference in entropy was calculated
from the area below theK(R) function by a numerical integration
technique. It should be pointed out that, while the HSMC and
the integration values for the entropy differences are equal within
the statistical errors, the integration errors are relatively large
because we have found the integration results to be sensitive to
the sample size (we studied samples between 600 and 5000
conformations).

Another test for the reliability of the HSMC results is based
on eq 22. Thus, we generated two samples of 200 structures
for K ) 7 and 9 and calculated the corresponding values ofFA,
from whichRd ) - [FA(9) - FA(7)]/2 was calculated. Indeed
Rd is very close to bothR(K ) 8) (Table 4) and the average of
R(9) andR(7) obtained from the two samples. Reconstructing
a single conformation of (Gly)10 based onnf ) 160 000 requires
∼240 min CPU time on a 2.6 GHz Athlon processor. Obviously,
application of HSMC to a sample of sizen can be carried out
in parallel onn processors.

IV. Summary
In this paper we have applied the HSMC method to the

flexible model of decaglycine in the helical conformation (atT
) 300 K) subjected to a stretching external force. However,
for forces larger than a small critical value a transition from
the helix to the extended state occurs already in the early stage
of the MC simulation and the entropy and free energy were
therefore obtained for the extended state. The present results
are more accurate than those obtained by the LS and QH
methods, and it is of interest to compare them also to results
obtained for the flexible model of (Gly)10 in ref 25 atT ) 100
K without applying external forces. Thus, the accuracy ofSA,
the upper bound of the entropy, is better than that obtained there

TABLE 4: HSMC Results for Extensions, R, Entropies, TSA,
and Potential Energies,Eint, for Different External Forces, K,
at T ) 300 Ka

K [kcal/(mol‚Å)] R (Å) TSA [kcal/mol] Eint [kcal/mol]

8 34.98 (3) 99.1 (2) -43.5 (2)
20 35.49 (2) 95.9 (2) -39.5 (4)
40 35.99 (2) 92.4 (3) -27 (1)
100 36.78 (2) 88.9 (3) +23.1 (8)

a The statistical error is defined in Table 2.

TABLE 5: Differences in the Entropy, T∆SA, (kcal/mol) at
T ) 300 K for Different Forces K Obtained by HSMC and
by Integration Using Eq 23a

HSMC integration

T[SA(K)8) - SA(K)20)] 3.2 (1) 3.1 (2)
T[SA(K)20) - SA(K)40)] 3.5 (2) 3.0 (5)
T[SA(K)40) - SA(K)100)] 3.5 (2) 3.8 (5)

a The statistical error is defined in Table 2.

TABLE 6: Calculation of the Extension, R, for External
Force K ) 8 from Free Energy Results (F) Obtained by
HSMC for K ) 7 and K ) 9 Using the Derivative, Eq 22a

F(K)7)
(kcal/mol)

F(K)9)
(kcal/mol)

-∆F/∆K
(Å)

[R(K)9)+R(K)7)]/2
(Å)

R(K)8)
(Å)

-387.5 (4) -457.7 (4) 35.1 (4) 34.96 (3) 34.98 (3)

a K is given in kcal/(mol‚Å). The free energy values were obtained
from samples of 200 configurations. The statistical error is defined in
the caption of Table 2.
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for the hairpin and is slightly worse than that obtained for the
helix and extended states. However, the results forFB andFD

are less accurate than those found for the unstretched peptides.25

It should be noted that, because of the decrease in the confor-
mational space due to the forces, the smallest bin size was
decreased from∆Rk/15 in ref 25 to∆Rk/60 in the present study.
We have also found that the MC acceptance rate should be∼0.4.

The molecule is found to be relatively stiff due to the strong
bond angle potentials, which is reflected by the relatively small
extension obtained by increasing the force by a factor of 10;
the corresponding decrease in the entropy, as expected, was
small as well. In other words, the contribution of the entropy
to differences in the free energy is significantly smaller than
the contribution of the external and internal energies. Still,
differences in entropy for the different forces are calculated with
acceptable errors that are not larger than 0.2 kcal/mol.

The present study constitutes the initial application of HSMC
to a peptide under stretching forces, therefore, we have chosen
a molecule (decaglycine) that is much smaller and simpler than
the molecules typically studied by AFM; however, simple small
peptides under a stretching force have been also simulated by
others,41,42,54and experiments on relatively small proteins have
been carried out.55 Because the time frame of AFM experiments
is in the millisecond to second range,37 the force exerted is
changed relatively slowly, leading approximately to a reversible
process. SMD simulations, on the other hand, are limited to
the nanosecond time frame and therefore require much stronger
(and rapidly changed) forces that lead to an irreversible
mechanical work that is significantly larger than the corre-
sponding reversible work. Calculating the reversible work (from
irreversible SMD trajectories) has been the subject of several
recent papers,44,45,54 but it can alternatively be obtained by
HSMC using eq 23, where state 1 corresponds to zero force
and state 2 to any force of interest along the SMD trajectory.
The irreversible work can be obtained by integratingK(R) (eq
23) and the difference between the reversible and irreversible
works thus calculated; these works can be compared to that
generated in the experiment.

The present results demonstrate further the versatility of the
HSMC method, which has been applied thus far to liquid argon
and TIP3P water,22.23 self-avoiding walks on a lattice,26 and
models of decaglycine.24,25To further enhance the performance
of HSMC, we are extending it now to molecular dynamics
(rather than MC) simulations, where our long-term goal is to
develop software that enables one to apply the method to a
general peptide consisting of any sequence of amino acid
residues in implicit as well as explicit solvent. HSMC will then
be used to study the effect of surface loop flexibility on protein
function and will become an ingredient of procedures for free
energy based docking of flexible ligands to an active site of an
enzyme. Thus, HSMC will become a useful tool also in protein
engineering. When applied with MD, the scope of HSMC will
be extended to more complex problems involving macromo-
lecular stretching, where the calculation of free energy and
potential of mean force profiles is of interest, as discussed in
some detail above.
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