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Flexible polyelectrolyte simulations at the Poisson—Boltzmann level:
A comparison of the kink-jump and multigrid configurational-bias
Monte Carlo methods
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We present a new approach for simulating the motions of flexible polyelectrolyte chains based on
the continuous kink-jump Monte Carlo technique coupled to a lattice field theory based calculation
of the Poisson—Boltzman(iPB) electrostatic free energy “on the fly.” This approach is compared to

the configurational-bias Monte Carlo technique, in which the chains are grown on a lattice and the
PB equation is solved for each configuration with a linear scaling multigrid method to obtain the
many-body free energy. The two approaches are used to calculate end-to-end distances of charged
polymer chains in solutions with varying ionic strengths and give similar numerical results. The
configurational-bias Monte Carlo/multigrid PB method is found to be more efficient, while the
kink-jump Monte Carlo method shows potential utility for simulating nonequilibrium
polyelectrolyte dynamics. €004 American Institute of Physic§DOI: 10.1063/1.1701841

I. INTRODUCTION counterion condensation effect which occurs in water for sin-
gly charged counterions when the charge separation is less

Polyelectrolyte chains present many theoretical chalthan 7.12 A2 however, the nonlinear PB equation is known
lenges due to the wide range of length scales which influence properly account for the ion condensation at a semiquan-
their structure and dynamics in condensed phase solutionsitative level, at least for monovalent counterions and
These charged polymers figure prominently in both biophysisalt!®4 This condensation can have profound effects on the
cal and technological applications. The chains can be eithe¥quilibrium structure of the chains.
rather rigid (DNA) or highly flexible (poly-acrylate or In the present paper we apply the kink-jump Monte
NaPS$. Quantities which impact the equilibrium properties Carlo (KJIMC) and the multigrid configurational bias Monte
of the chain include charge density along the chain, ionicCarlo (CBMC) methods to the problem of calculating end-
strength of the solvent, solvent dielectric constant, and sego-end distances of free charged polymer chains in electro-
ment excluded volume size. Recent theoretical work on flexlyte solutions of varying ionic strengths. Results of the two
ible chains has focused on self-consistent field thebifes methods are compared to each other and to analogous calcu-
and molecular level simulations. Simulation research has eiations done at the Debye—kkel (DH) level. Also, the rela-
ther been at the all-atom restricted primitive model 1&felr  tive efficiency of the two approaches is estimated. A long
has utilized effective Debye—ldkel pair potentialé:® In the  term goal of this work is to simulate large charged polymer
present work, we adopt an intermediate strategy by modelingystems without explicit inclusion of the ion gas and in a
the polymer chains as discrete and treating the counterionsay which scales linearly with system size.
and any added salt at the continuum Poisson—Boltzmann In Sec. Il we describe the KIMC simulations for solving
(PB) level. the PB equation “on the fly.” Then in Sec. Il we discuss the

Treating the background ions at the continuum level is &CBMC method for sampling polymer configurations and the
kind of Born—Oppenheimer approximation for the ion gas. Itmultigrid (MG) technique for solving the PB equation. Simu-
assumes that the background ions equilibrate much modation results obtained via both methods are compared in
quickly than the polymer chains, and allows for highly effi- Sec. IV, where we plot the equilibrium end-to-end distance
cient sampling on the PB free energy surface. Previous simwf the charged chain as a function of the Debye lerigéh,
lations have employed similar approaches for rigid colloidalionic strength of the solutigrand the monomer charge. Dis-
systems: cussion and conclusions are provided in Sec. V.

The linearized Debye—Hikel theory is only strictly ap-
propriate for very small potentialS.Generally, for charged

polymers, this condition is not met in the region near thell- MONTE CARLO SIMULATIONS WITH

: ; : : : OISSON-BOLTZMANN CALCULATION OF THE
chain. The linearized theory fails to capture the nonlmea‘ELECTROSTATIC FREE ENERGY “ON THE FLY”

3present address: Department of Chemistry, Northwestern University, Evan- 1€ _ﬁrSt_ Monte Car_lo method we will emp]oy is based
ston, IL 60208. Electronic mail: stefan@chem.northwestern.edu on the kink-jump technique developed by Baumger and
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Binder!® and later used by us to perform Monte Carlo simu-Moreover, the subscriptr f” stands for “mean field,” and
lations for calculation of partition coefficients of a polymer serves to remind us that Poisson—Boltzmann theory consti-
chain distributed among cavities with different si2ghis  tutes an approximation to the statistical mechanics of the
method treats the polymer chain as a “pearl-necklace” inmobile ion “gas.” In the calculations presented here, we use
which two consecutive monomers are connected by a rigidixed boundary conditions with the field set to zero at the
rod of lengthl,. The monomers are modeled as hard sphereboundary of the allowed region of space.
whose radius is adjusted to describe the strength of the ex- For each monomer movejA, i.e., the difference be-
cluded volume interaction. Initially, the chain is placed attween the electrostatic free energy of the chain before and
random in the simulation box. Then the chain motion isafter the trial move, is calculated, and the move is accepted
evolved by the kink-jump technique, where at each step avith probability p=1 if SA<O (i.e., A is lower in the trial
monomer, say thath one, is picked at random and rotated state than in the initial stateand p=exp(—BJA) if SA>0.
around the axis connecting the{ 1)th and the (+1)th  In other words, we employ the standard Metropolis algo-
monomers by a random angle. If the end monomer is chosenithm. Once a decision is made about whether to accept or
it is moved to a new random position keeping the rod lengthreject the trial configuration, the output configuration is re-
between it and the monomer to which it is connected fixedturned to its original location in continuous three dimen-
After each monomer move, the polymer chain is put onsional space and the next KIMC move is attempted.
a discrete lattice so that each monomer is placed on the near-
est lattice point to its continuous coordinates. If the lattice

spacing id, and each point on a cubic lattice is described byIII CONFIGURATIONAL BIAS MONTE CARLO
the integer triplen, then the discretized PB equation reads METHOD AND THE MULTIGRID TECHNIQUE FOR

SOLVING THE POISSON-BOLTZMANN EQUATION

a’z Apm®m= v+ eXp(¢n— V) — v_ exp(— ¢, —V,) . . )
m The strategy of this Monte Carlo method is to first grow

the chains with a biased random walk using the CBMC
+Z QjonRr» (1) approach® This step is performed at the linearized pair po-
I : tential level
where A, is the lattice Laplaciah’ a= el/4mBq? with e Car
the dielectric constan3=1/kT the inverse temperature and M =7%\g € ] (5)
q the proton charge; furthermor®; is the charge of thgh kT r

monomer(in units of the proton chargelocated aR; . This  ere7 is the monomer chargén units of the proton charge
set of difference equations can be solvgd.numer[cgll)_/ using _ is the Bjerrum length andt is the inverse Debye screen-
several methods. Here we employ a variational minimizationng |ength, which depends on the electrolyte concentration.
strategy, as described in Ref. 17. As discussed at length #ne jinearized potential provides a guiding potential for the
that work, the field{ ¢} in Eq. (1) can be obtained as the construction of the full chain. Then, we numerically solve
unique minimum of a certain functional of lattice field vari- the nonlinear PB equation with a multigrid technig(sze
ables. To locate this minimum, we employ a simple linepejow) to obtain a correction to the linearized energy enter-
minimization strategy with a Newton—Raphson routine tojng into the Monte Carlo weight. The chain growth process is
find the (unique minimum in each successive field efficient and tends to direct the trial configuration into favor-
direction’® Given {¢,} satisfying Eq.(1), i.e., the dimen- aple regions. The correction factor modifies the trial weight
sionless PB fieldsee below the electrostatic free energy with a Boltzmann factor resulting from the difference be-
can be extracted via the relationsfip’:*® tween the linearized and many-body free energies. One so-
BA=—E_+n,Iny,+n_Iny_, ) lution (_)f the PB equati_on is thus required_for_each trial con-
formation. We emphasize that the simulation is conducted on
with the full Poisson—Boltzmann free energy surface and the lin-
earized potential is only used to guide in the rapid growth of
the trial conformation.
The CBMC method is described in detail in Ref. 20. To
_ _ summarize, the chain is grown segment by segment, with the
Xexp — ¢n,—Vpy) + 2 Qjdr /2. (3 new segment location chosen based on its Boltzmann weight.
J : The “local partition function” is then computed and the
In Egs.(2) and(3), A is the Helmholtz free energp,. is the  product of these terms during the growth process yields the
number of+ (monovalent mobile ions in the solutiony is ~ Rosenbluth weightWy, for the trial conformation. The
an exclusion potentialwhich is zero in allowed regions of Monte Carlo choice is obtained simply from the ratio of the
space and proh|b|t|ve|y h|gh in forbidden regm’nsﬁ: new and old Rosenbluth Welgf(IISI our case modified by the
—Bqe is the dimensionless electrostatic potential solvingdifference between the linearized energy and the many-body

the PB equation, ang'. are determined by the conditon  PB free energy, below The CBMC technique is highly ef-
ficient, allowing for simulations of chains with hundreds of

Na= %2 e %nVn 4) segments. The final Monte Carlo decision process with the
- T nonlinear correction is

S|

n

I

mf— — 7+; %exqgn_vn) + 7—;

|
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Pacc(l“—>1"’) =Min l,m

(6)

Wrre_'BAUF’) monomer charge = 0.25

120 ——p—F——7—T7—T—T7—7—

where AUy is the difference between the many-body and &
pair potential free energies. The majority of the time in this  10.0 3
algorithm is spent in the numerical solution of the PB equa- R =
tion over the grid domain. In our simulations, we cut the
chains at a random location and regrow the chain from the
point of the cut with the above procedure. The advantages of 1
the CBMC approach ardl) each regrowth process generates o« 6.0~ —
an independent trial configuratiof) due to the nature of
the growth process, the simulation efficiently samples large- s+ Kq-DH
amplitude motions, an(B) the PB equation only needs to be 4.0 o mgPB
solved once per independent trial conformation. i « mg-DH 1
We numerically solve the PB equation on a lattice using 2.0 .
the full approximation schem@AS) MG method. The MG
technique allows for solution of nonlinear problems with L | |
similar efficiency to linear ones, and it scales linearly in %90 20 40 60 80 100 120 140
computer time with the system size. Details of our numerical Debye length
approach are given in Refs. 14, 21, and 22. In the MG 8PRIG. 1. The end-to-end distan@@as a function of Debye length, both in
proach, the desired solution on the fine scale is correcteghits of bond length4 A), for a chain of 32 monomers, each having a
following iterations of a modified problem on coarser scalescharge of 0.25in units of the proton chargeThe Debye lengths are aver-
These corrections decimate long wavelength components @ped over the course of the simulati(_)n, anq, i_n decr_easing order, correspond
. . s - N to one, 20, 40, and 70 monovalent impurity ion pairs plus the appropriate
the error which eliminates the “critical slowing down pI’Ob— number of monovalent negative counterions needed for electroneutrality of
lem occurring in real space solvers. The result is an algothe solution; see text for further detail§The error bars for the Debye
rithm that typically locates the solution in 10—20 lattice lengths, as well as for the Debye—tkel results, are negligible and are,
sweeps on the fine scale to within the truncation errors. mherefore, not showh.The swelling of the chains due to the electrostatic

K h | f I f repulsion between the charged monomers is evident, in comparison to the
our work, we converged the total free energy to a sma raC'uncharged case for whidR=7.85. In the legend “kj” stands for results of

o Ki-PB .

tion of KT (0.01 k7). the KIMC method, “mg” stands for the results of the multigrid CBMC
technique_s, “PB” stands for Poisson—Boltzmann, and “DH” stands for
IV. SIMULATION RESULTS AND DISCUSSION Debye—Higkel.

We have applied the methods described in the previous
sections to the calculation of the mean end-to-end distanc&xcluded volume is enforced by forbidding a growing chain
R, of a charged polymer chain in electrolyte solution. Thefrom visiting any lattice site that is already occupied.
chains in our calculations consist of 32 monomers, with a In the long chain limit we expect the fine details of how
bond length ©4 A which is chosen as the unit length in our equilibrium configurations of the polymer chain are sampled
plots. The motion of the chain is simulated in a cubic box ofto become irrelevant, based on general principles such as the
size 33, which is the same as the size of the lattice, that iscentral limit theorent> However, for modest length chains
the lattice spacing is one bond length. In the KIMC simula-which can be accessed by explicit simulation, some differ-
tion, after each move the chain is translated to the center afnces in system properties due to the polymer model are
the box to ensure that it does not reach the end of the bokevitable. Since we are primarily interested here in electro-
and thus give rise to spurious edge effects. We have corstatic issues arising from the charge on the polymer chain
firmed that the end-to-end distances resulting from the simuand mobile ions in the solvent, we have attempted to gener-
lations of a noncharged chain under the same conditions satte the most meaningful comparison of the predictions of our
isfy all the proper theoretical predictions. Namely, in the casdwo models by adjusting model parameters such that the
of no excluded volume interactiorR?=(N—1), and with  properties of theuncharged polymer systems agree. Then
excluded volume interactiorR?=(N—1)(6® (with R mea- electrostatic effects are introduced, and the results obtained
sured in units of the bond lengthin the 32 monomer case via both models are compared with no further parameter ad-
considered heréR=7.85 when monomer excluded volume justment.
is “turned on.” In particular, before the polyelectrolyte computations the

The KJ and CBMC procedures considered in this papetwo methods were calibrated by adjusting the excluded vol-
represent the polymer configurations in somewhat differenime radius in the continuous kink-jump simulation so that it
ways, as noted above. Again, the kink-jump model representsroduces the same end-to-end distance as the multigrid
the polymer as beads connected by rdds continuous CBMC method in the case of noncharged chains. The effec-
spacg; excluded volume effects are included by giving thetive radius resulting from this calibration, and then used
monomer beads a finite radius and disallowing any configuthroughout in the kink-jump simulations, was 0.34 bond
rations where the finite-size beads overlap. On the otheengths.
hand, the implementation of the CBMC method adopted in  In Fig. 1 we show the dependence Rfon the Debye
this work grows connected configurations on a cubic latticelength for the case of a chain with monomer charge Qi25
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monomer charge = 0.50 0.50, and 0.75 correspond to 15.5, 7.75, and 5.17 A between
8.0 —t charges if we had put unit charges on the chain. The onset of
i L L condensation occurs at a chain charge density of progon
16.0 a - charge every 7.12 A, so this set of figures shows how we
- . x . approach and exceed that threshold. Both the KIMC and the
14.0 Lt ) { m multigrid CBMC simulations were performed for a water
12.0 B =X = = | solution with a dielectric constart=78. Each figure shows
K = . KJIMC and CBMC results based on an electrostatic free en-
10.0} — ergy calculated at the PB level. For comparison, analogous
o« i ] results obtained by approximating the electrostatic free en-
8.0 [ e K-PB ] ergy as a sum of Debye-Idkel pair potentials are also dis-
6.0} s+ Ki-DH -  played.

- o mg-PB . In the case of small monomer charge, Fig. 1, we observe
4.0- « mg-DH - practically coinciding results from the multigrid CBMC
20 [ 7 simulation and both Debye-ldkel simulations, while the

L ] end-to-end distances resulting from the KIMC PB simulation
oob— 1 111 are somewhat shorter. We believe this difference is due to an

‘0.0 2.0 4.0 6.0 80 100 120 14.0

Debye length artifact of the (different lattices used in the two types of

calculation. Fortunately, the discrepancies do not exceed
FIG. 2. Same as Fig. 1 for monomer charge 0.50. The Debye lengths, inle% between Corresponding KIMC and CMBC results in
decreasing order, correspond to one, 20, 50, and 70 monovalent impurity ion . . . . .
pairs. any of the figures, despite the relatively coarse lattices uti-

lized to produce them. In Figs. 2 and 3, as the monomer

charge increases, we observe a deviation between the
units of the proton charge To achieve different Debye Poisson—Boltzmann and the Debye>aKel results, which is
Ien_gths, an appropriate number of monovalent Impurity 10nmost obvious in Fig. 3, where the monomers have the rela-
pairs was added into the solvent portion of the simulationjvely large charge of 0.75. In that case, the two PB simula-
box. (In addition, the number of monovalent negative coun-tons agree well with each other, perhaps because the chains
terions needed to neutralize the positive charge on the polyyre stretched due to the stronger intermonomer repulsion,
mer chain was added to the solvent; in Fig. 1, this amounteg,aying the more folded configurations less likely, and di-
to 32><O'25_,8 such countgrlonBFlgures 2 and 3 present the minishing the effect of the lattice artifacts mentioned above.
corresponding results fcR in the cases of monomer charge In Fig. 3 we also show via unfilled triangléBH-REN) re-
0.50 and 0.75, respectively. Note that monomer charges O.ZgultS based on a CBMC DH-level calculation in which the

charge on the monomers has been renormalized to a value of
monomer charge = 0.75 1 proton charge per 7.12 A. According to Manning counter-
ion condensation theofy,for chain charge densities exceed-

40— T T T T T T T ] ing this critical value, some counterions from the surround-
220 — ing liquid condense onto the chain so as to reduce the
20.0 - . a * a effective polymer charge density to the critical value. The
180k - X i N results obtained here are consistent with such a mechanism.

L . - For the KIMC simulations we define 32 monomer

16.01~ (s x ] moves (simulation steps which on average correspond to

1401 =% * - one move per each monomer in the chain, as one simulation
o 12.0 == ] sweep. The number of simulation sweeps for the results pre-

100k . KB N sented here was between 120000 and 180000 per calcula-

- ! . tion. After computing the PB free energy on the lattice, we
8.0 « ki-DH - _ . . )

i o mgPB ] saved the old eIectro;tatlc flleld_an.d. used it as a starting field
6.0~ . mg-DH . for the next computation. This significantly reduced the com-
40 + DH-REN - putation time, since in the kink-jump simulations we move
20k h only one monomer at a time, so that the new electrostatic

A T T T T field is only slightly perturbed from the old one. Thus, after
008 20 40 60 80 100 120 140 the first PB computation on the lattice, we only needed be-

Debye length tween one and five iterations to find the new PB free energy
FIG. 3. Same as Fig. 1 for monomer charge 0.75. The Debye lengths, ifVithin the same predetermined precisidrased on the re-
decreasing order, correspond to one, ten, 20, and 30 monovalent impuritgidual of the numerical solution of E¢l)]. For the CBMC
ion pairs. DH-REN indicates results of a simulation based on a Debye-pB simulations. the polymer chain was regrown 20 000 times
Huckel pair potential with renormalized monomer charge; see text for de- ' .
tails. (It should be noted that the results for kj-PB and DH-REN in the caselll each run. In both the KJMC and the CBMC DH simula-

of 30 monovalent impurity ions are nearly coincident. tions 16 sweeps were performed.
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