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There are three key experimental findings in the preceding paper: (1) high trial-to-

trial variability of calcium signals detected at the single pixel level under normal

conditions; (2) a graded reduction in pixel signal after a reduction in the driving force for

calcium entry (reduced extracellular calcium concentration); and (3) a virtually all-or-

none reduction of pixel signals after block of a subset of the voltage-gated calcium

channels (VGCCs) present in the nerve terminal.  The density of VGCCs in the active

zone (AZ) is unknown, and therefore the number of VGCCs (n) that contribute to the

signal detected by an overlying pixel is also unknown.  In addition, the average

probability that any given VGCC opens during a trial ( p ) is unknown.  We wish to

determine what combination of possible values for n and p  would be most likely to

produce the key experimental results.

Anatomical evidence (discussed in preceding paper) suggests an upper limit of ~200

VGCCs per AZ.  Because a linear array of 4 pixels is required to sample each AZ, each

pixel would sample ~50 VGCCs.  A lower limit cannot presently be established, but a

common assumption is one VGCC per synaptic vesicle, leading to ~30 VGCCs per AZ,

or 6-8 VGCCs per pixel.  Possible limits on p  are even more difficult to establish at

present, and so here we illustrate predicted results for several values that cover a broad

range.
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Given n VGCCs sampled by each pixel, and given that each VGCC has a probability

p  of opening during a trial (action potential), the probability that r out of the n channels

will open (pr) is obtained from a binomial distribution:
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In principle, r may have any value from 0 (all channels fail to open) to n (all channels

open), and the sum of all pr values is equal to one 
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and, as intuition suggests, in this case simplifies to pnr ⋅= .  The standard deviation

(SD) of r is given by )1( ppn −⋅ , and a measure of relative variability across different

sets of conditions is given by the coefficient of variation ( )rSDCV = .

Figure A1 shows distributions of pr values computed from Eq. 1, using a low (0.1) or

high (0.8) value for p  and a range of values for n.  Each panel also shows the

corresponding values of r  and CV.  CV increases as n or p  decreases, and thus a high

degree of experimental variability argues for a relatively low value of n and/or p .  The

probability of a failure (r = 0, probability p0) also increases as n or p  decreases, although

for large values of  p  the actual magnitude of p0 is very small even for small values of n.

For the case of a failure, Eq. 1 simplifies to:
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( )npp −= 10 (Eq. 2)

The probability that a failure does not occur (r > 0, probability p>0) therefore is given by:

( )nppp −−=−=> 111 00 (Eq. 3)

Assuming a linear detection system, the average calcium influx to be detected by

fluorescence at the single pixel level is proportional to the average value (expectation) of

r for all non-zero events ( ))( 0>rE . In other words, VGCCs that fail to open do not

contribute to the signal, and so the proportional contributions of the remainder must be

normalized to p>0:
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Using Eqs. 2-4, the values of p0 and 0>r  can be computed for different assumed

values of n and p .  In Fig. A1, p0 is shown by the first bar in each panel, and 0>r  is

indicated.  By computing these values after a reduction in n, the proportional effect of

blocking a fraction of VGCCs then can be predicted.  For example, Fig. A1 shows a 2-

fold reduction in n from 48 to 24 for the assumed upper extreme of VGCC density, and

from 6 to 3 for the lower extreme.  Table A1 summarizes the effects of such a 2-fold

reduction in n for p  values of 0.1, 0.2, and 0.8.
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In the preceding paper, an experimental reduction in n of about 2-fold produced a

similar decrease in total calcium signal, but the intensity of remaining single pixel signals

did not decrease significantly.   To observe this all-or-nothing effect at the single pixel

level, the value of 0>r  must be approximately the same before and after blocking half of

the VGCCs, i.e., 2
00

nn rr >> ≈ .  Table A1 shows that this is predicted only when n is at the

low extreme and p  is very small, on the scale of 0.1 ( nn rr 00 9.02
>> ⋅≈ ).  Under these

conditions, the predicted increase in the proportion of failures is relatively small (less

than 2-fold).  In contrast, large values of p  and/or large values of n predict single pixel

changes that scale nearly in direct proportion to the change in n ( nn rr 00 5.02
>> ⋅≈ ), i.e., a

graded response is expected.  At the same time, the predicted change in proportion of

failures increases enormously, although this is simply a consequence of the very small

overall frequency of failures.∗  In summary, the experimental data presented in the

preceding paper argue very strongly and specifically for both sparse density (about one

per vesicle) and low opening probability (on the scale of 0.1) for VGCCs at the frog

neuromuscular junction.

                                                
∗ As p  approaches 0, Eq. 2 can be approximated by ( ) pnpp n ⋅−≈−= 110 .  The right-hand side of this

expression shows that a decrease in n will cause a relatively small increase in p0, because n simply modifies
the already small value of p .  On the other hand, as p  becomes appreciably larger than 0, this simplified

expression for Eq. 2 does not apply.  A decrease in n will cause a very large relative increase in p0 because
n is an exponential modifier of the small quantity ( )p−1 .
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Fig. A1.  Binomial probability distributions for an assumed average opening probability

( p ) of 0.1 (top row) or 0.8 (bottom row).  See text for explanation of additional

computed values.

Table A1.  Predicted effect of a 2-fold reduction in n on the probability of failure (p0) and

average single pixel signal intensity ( 0>r ).  Values are shown as ratios, where the

superscript n refers to the indicated values of 6 or 48, and the superscript n/2 refers to a

reduction to 3 or 24, respectively.
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